(Pontificia Universidad Católica del Perú, 2020-12-12) Checya, Rode
En este trabajo, consideramos campos de vectores suaves por partes definidos en una superficie compacta. El problema que estudiamos es la caracterización de la estabilidad estructural de campos de vectores suaves por partes. Después de M. Peixoto, J. Palis y A. F. Filippov, vemos que las condiciones necesarias y suficientes son: hiperbolicidad de puntos singulares, genericidad de tangencias, no conexión de sillas singulares y sólo órbitas recurrentes triviales. Estas condiciones fueron adaptadas por Brouke, Pugh y Simic para campos de vectores suaves por partes. Mostramos que para campos de vectores suaves por partes la estabilidad estructural es una propiedad genérica local desde un punto de vista diferente, y de ahí que caracterizamos al conjunto de los campos suaves por partes que son estructuralmente estables.