Local dynamics of parabolic skew-products
Acceso a Texto completo
Fuente
Pro Mathematica; Vol. 31 Núm. 61 (2020)Abstract
La dinámica local en torno a vecindades de un punto fijo ha sido ampliamente estudiada tanto para gérmenes de una como de varias variables complejas. En dimensión uno disponemos de un cuadro casi completo de la trayectoria de las órbitas en torno a una vecindad del punto fijo. No obstante, en dimensiones más altas, apenas se cuenta con resultados parciales. En este trabajo analizamos un caso intermedio entre las dinámicas de una y varias variables. Consideramos aplicaciones de productos trenzados de la forma F (z, w)=( (z),f(z, w)) y tratamos el caso parabólico, es decir, cuando DF (0, 0) = Id. Describimos el comportamiento de órbitas en torno a vecindades del origen. Además, establecemos fórmulas para las aplicaciones de conjugación en diferentes regiones. The local dynamics around a fixed point has been extensively studied for germs of one and several complex variables. In dimension one, there exist a complete picture of the trajectory of the orbits on a full neighbourhood of the fixed point. In greater dimensions some partial results are known. In this paper we analyze a case that lies between one and several variables. We consider skew product maps of the form F (z, w)=( (z),f(z, w)) and deal with the parabolic case, that is, when DF (0, 0) = Id. We describe the behaviour of orbits around a neighbourhood of the origin. We establish formulas for conjugacy maps in diferent regions of these neighbourhoods.