An Analytical Approach to Predict the Performance of Thoracic Transplantations

dc.contributor.authorOztekin, Asil
dc.date.accessioned2023-07-21T19:18:18Z
dc.date.available2023-07-21T19:18:18Z
dc.date.issued2012
dc.description.abstractPredicting the performance of planned organ transplantation has proved to be a critical problem to solve. The purpose of this study is to present a data mining-based model for variable filtering and selection in order to predict the performance of thoracic transplantation via the graft survivability after the transplant. To this end, 10-fold cross-validated information fusion-based sensitivity analyses on machine learning models are conducted to receive an unbiased predictor variable ranking to be used in a subsequent Cox survival analysis. The study is unique in that it provides a mathematical means for medical experts to deal with thoracic recipients more efficiently and effectively.en_US
dc.identifier.urihttps://repositorio.pucp.edu.pe/index/handle/123456789/194814
dc.language.isoeng
dc.publisherPontificia Universidad Católica del Perú. CENTRUM
dc.publisher.countryPE
dc.relation.ispartofurn:issn:1851-6599
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourceJournal of CENTRUM Cathedra, Vol. 5, Issue 2
dc.subjectPrediction modelen_US
dc.subjectUnited Network for Organ Sharing (UNOS)en_US
dc.subjectMachine learningen_US
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.04
dc.titleAn Analytical Approach to Predict the Performance of Thoracic Transplantationsen_US
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo

Archivos

Bloque original

Mostrando 1 - 1 de 1
Miniatura
Nombre:
JCC-5.2-74.pdf
Tamaño:
662.46 KB
Formato:
Adobe Portable Document Format
Descripción:
Texto completo