An Analytical Approach to Predict the Performance of Thoracic Transplantations

Miniatura

Fecha

2012

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú. CENTRUM

DOI

Resumen

Predicting the performance of planned organ transplantation has proved to be a critical problem to solve. The purpose of this study is to present a data mining-based model for variable filtering and selection in order to predict the performance of thoracic transplantation via the graft survivability after the transplant. To this end, 10-fold cross-validated information fusion-based sensitivity analyses on machine learning models are conducted to receive an unbiased predictor variable ranking to be used in a subsequent Cox survival analysis. The study is unique in that it provides a mathematical means for medical experts to deal with thoracic recipients more efficiently and effectively.

Descripción

Palabras clave

Prediction model, United Network for Organ Sharing (UNOS), Machine learning

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess