An Analytical Approach to Predict the Performance of Thoracic Transplantations
Archivos
Fecha
2012
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú. CENTRUM
DOI
Resumen
Predicting the performance of planned organ transplantation has proved to be a critical problem to solve. The purpose of this study is to present a data mining-based model for variable filtering and selection in order to predict the performance of thoracic transplantation via the graft survivability after the transplant. To this end, 10-fold cross-validated information fusion-based sensitivity analyses on machine learning models are conducted to receive an unbiased predictor variable ranking to be used in a subsequent Cox survival analysis. The study is unique in that it provides a mathematical means for medical experts to deal with thoracic recipients more efficiently and effectively.
Descripción
Palabras clave
Prediction model, United Network for Organ Sharing (UNOS), Machine learning
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess