A Note about Detection of Additive Outliers with Fractional Errors
Files
Date
2013
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú. Departamento de Economía
Abstract
Perron y Rodríguez (2003) argumentan que su procedimiento para detectar outliers aditivos (_ d) es potente aún cuando hay desviaciones del caso de raíz unitaria. En esta nota usamos simulaciones de Monte Carlo para mostrar que Td es potente cuando los errores son de tipo ARFIMA (p; d; q). Usando dichas simulaciones, calculamos el número esperado de outliers aditivos hallados en este contexto y el número de veces que el método Td identifica la verdadera localización de los outliers aditivos. Los resultados muestran que la potencia del procedimiento Td depende del tamaño de los outliers. Cuando tenemos un PGD con outliers de gran tamaño, el porcentaje de veces que Td detecta correctamente la posición de los outliers es 100%. Una comparación entre Td y le procedimiento TRAMO-SEATS es incluído como ilustración.
Perron and Rodríguez (2003) claimed that their procedure to detect for additive outliers (_ d) is powerful even when we have departures from the unit root case. In this note, we use Monte-Carlo simulations to show that Td is powerful when we have ARFIMA (p; d; q) errors. Using simulations, we calculate the expected number of additive outliers found in this context and the number of times that the approach Td identifies the true location of the additive outliers. The results indicate that the power of the procedure Td depends of the size of the additive outliers. When we have a DGP with big sized additive outliers the percentage of time that Td detects correctly the location of the additive outliers is 100.0%. A comparison between Td and the procedure TRAMO-SEATS is also included.
Perron and Rodríguez (2003) claimed that their procedure to detect for additive outliers (_ d) is powerful even when we have departures from the unit root case. In this note, we use Monte-Carlo simulations to show that Td is powerful when we have ARFIMA (p; d; q) errors. Using simulations, we calculate the expected number of additive outliers found in this context and the number of times that the approach Td identifies the true location of the additive outliers. The results indicate that the power of the procedure Td depends of the size of the additive outliers. When we have a DGP with big sized additive outliers the percentage of time that Td detects correctly the location of the additive outliers is 100.0%. A comparison between Td and the procedure TRAMO-SEATS is also included.
Description
Keywords
Outliers aditivos, Errores ARFIMA, Detección de Outliers aditivos
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess