Data Envelopment Analysis in the Presence of Partial Input-to-Output Impacts
Archivos
Fecha
2011
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú. CENTRUM
DOI
Resumen
Data envelopment analysis (DEA) is a methodology used to evaluate the relative efficiencies of peer decision-making units (DMUs) in multiple input, multiple output situations. In the original formulation, and in the vast literature that followed, the assumption was that all members of the input bundle affected the output bundle. However, many potential applications of efficiency measurement exist wherein some inputs do not influence certain outputs. For example, in a manufacturing setting from which multiple products (outputs) emerge, resources (e.g., packaging labor) will not affect products that do not pass through that department. For this paper, extension of the conventional DEA methodology allows for the measurement of technical efficiency in situations where only partial input-to-output impacts are evident. Evaluating the efficiencies of a set of steel fabrication plants using the methodology was the focus of the research.
Descripción
Palabras clave
DEA, Partial input to output impacts
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess