Data Envelopment Analysis in the Presence of Partial Input-to-Output Impacts

Cargando...
Miniatura

Fecha

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú. CENTRUM

Resumen

Data envelopment analysis (DEA) is a methodology used to evaluate the relative efficiencies of peer decision-making units (DMUs) in multiple input, multiple output situations. In the original formulation, and in the vast literature that followed, the assumption was that all members of the input bundle affected the output bundle. However, many potential applications of efficiency measurement exist wherein some inputs do not influence certain outputs. For example, in a manufacturing setting from which multiple products (outputs) emerge, resources (e.g., packaging labor) will not affect products that do not pass through that department. For this paper, extension of the conventional DEA methodology allows for the measurement of technical efficiency in situations where only partial input-to-output impacts are evident. Evaluating the efficiencies of a set of steel fabrication plants using the methodology was the focus of the research.

Descripción

Citación

DOI

Acceso al texto completo solo para la Comunidad PUCP

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess