Characteristic classes of modules

dc.contributor.authorKong, Maynard
dc.date.accessioned2017-09-25T21:47:22Z
dc.date.available2017-09-25T21:47:22Z
dc.date.issued2008es_ES
dc.description.abstractEl artículo no presenta resumenes_ES
dc.description.abstractIn this paper we have developed a general theory of characteristic classes of modules. To a given invariant map defined on a Lie algebra, we associate a cohomology class by using the curvature form of a certain kind of connections. Here we present a very simple proof of the invariance theorem (Theorem 12), which states that equivalent connections give rise to the same characteristic class. We have used those invariant maps of {9} to define Chern classes of projective modules and we have derived their basic properties. It might be interesting to observe that this theory could be applied to define characteristic classes of bilinear maps. In particular, the Euler classes of {6} can be obtained in this way.en_US
dc.formatapplication/pdf
dc.identifier.urihttp://revistas.pucp.edu.pe/index.php/promathematica/article/view/10256/10701
dc.language.isospa
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPE
dc.relation.ispartofurn:issn:2305-2430
dc.relation.ispartofurn:issn:1012-3938
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourcePro Mathematica; Vol. 22, Núm. 43-44 (2008)es_ES
dc.subjectLie Algebraes_ES
dc.subjectProjective Moduleses_ES
dc.subjectChern Classeses_ES
dc.subjectEuler Classeses_ES
dc.subjectCohomologyes_ES
dc.subjectCurvature Formes_ES
dc.subjectConnectiones_ES
dc.subjectInvariante Mapses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.00
dc.titleCharacteristic classes of moduleses_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo

Files