Characteristic classes of modules

No hay miniatura disponible

Fecha

2008

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

El artículo no presenta resumen
In this paper we have developed a general theory of characteristic classes of modules. To a given invariant map defined on a Lie algebra, we associate a cohomology class by using the curvature form of a certain kind of connections. Here we present a very simple proof of the invariance theorem (Theorem 12), which states that equivalent connections give rise to the same characteristic class. We have used those invariant maps of {9} to define Chern classes of projective modules and we have derived their basic properties. It might be interesting to observe that this theory could be applied to define characteristic classes of bilinear maps. In particular, the Euler classes of {6} can be obtained in this way.

Descripción

Palabras clave

Lie Algebra, Projective Modules, Chern Classes, Euler Classes, Cohomology, Curvature Form, Connection, Invariante Maps

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess