Cremona Symmetry in Gromov-Witten Theory
Acceso a Texto completo
Fuente
Pro Mathematica; Vol. 29, Núm. 57 (2016)Abstract
En este trabajo establecemos la existencia de una simetra en el marco de la teora de Gromov-Witten para CPn y su explosion a lo largo de puntos. La naturaleza de esta simetra queda codicada en la transformacion de Cremona y su resolucion en una variedad torica del permutoedro. Esta simetra expresa algunos invariantes difciles de calcular junto con otros que no lo son tanto. Nos centramos en implicaciones enumerativas; en particular esta tecnica ofrece una prueba enuna lnea de la unicidad de la curva racional normal. Nuestro metodo involucra un estudio de la geometra torica del permutoedro, as como el de la degeneracion de los invariantes de Gromov-Witten. We establish the existence of a symmetry within the Gromov-Witten theory of CPn and its blowup along points. The nature of this symmetry is encoded in the Cremona transform and its resolution, which lives on the toric variety of the permutohedron. This symmetry expresses some difficult to compute invariants in terms of others less difficult to compute. We focus on enumerative implications; in particular this technique yields a one line proof of the uniqueness of the rational normal curve. Our method involves a study of the toric geometry of the permutohedron, and degeneration of Gromov-Witten invariants.
Temas
Gromov-Witten Theory
Enumerative Geometry
Stationary Invariants
Cremona Transform
Projective Space
Permutohedron
Permutohedral
Toric Variety
Losev-Manin Space
Teoría de Gromov-Witten
Geometría Enumerativa
Invariantes Estacionarios
Transformación de Cremona
Espacio Proyectivo
Permutoedro
Variadad Tórica Permutoedral
Espacio de Losev-Manin
Enumerative Geometry
Stationary Invariants
Cremona Transform
Projective Space
Permutohedron
Permutohedral
Toric Variety
Losev-Manin Space
Teoría de Gromov-Witten
Geometría Enumerativa
Invariantes Estacionarios
Transformación de Cremona
Espacio Proyectivo
Permutoedro
Variadad Tórica Permutoedral
Espacio de Losev-Manin