A large deviation principle for a natural sequence of point processes on a Riemannian two-dimensional manifold

No hay miniatura disponible

Fecha

2018-09-10

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Acceso al texto completo solo para la Comunidad PUCP

Resumen

Siguiendo las tecnicas desarrolladas por Paul Dupuis, Vaios Laschos y Kavita Ramanan en [8], se establecera un principio de grandes desviaciones para una secuencia de procesos puntuales denidos por medidas de Gibbs en una variedad riemanniana bidimensional compacta y orientable. Veremos que la correspondiente secuencia de medidas empíricas converge a la solucion de una ecuacion diferencial parcial y, en ciertos casos, a la forma de volumen de una metrica de curvatura constante.
We follow the techniques of Paul Dupuis, Vaios Laschos, and Kavita Ramanan in [8] to prove a large deviation principle for a sequence of point processes dened by Gibbs measures on a compact orientable two- dimensional Riemannian manifold. We see that the corresponding sequence of empirical measures converges to the solution of a partial differential equation and, in some cases, to the volume form of a constant curvature metric.

Descripción

Palabras clave

Desviación grande

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess