A large deviation principle for a natural sequence of point processes on a Riemannian two-dimensional manifold
dc.contributor.author | García Zelada, David | |
dc.date.issued | 2018-09-10 | es_ES |
dc.description.abstract | Siguiendo las tecnicas desarrolladas por Paul Dupuis, Vaios Laschos y Kavita Ramanan en [8], se establecera un principio de grandes desviaciones para una secuencia de procesos puntuales denidos por medidas de Gibbs en una variedad riemanniana bidimensional compacta y orientable. Veremos que la correspondiente secuencia de medidas empíricas converge a la solucion de una ecuacion diferencial parcial y, en ciertos casos, a la forma de volumen de una metrica de curvatura constante. | es_ES |
dc.description.abstract | We follow the techniques of Paul Dupuis, Vaios Laschos, and Kavita Ramanan in [8] to prove a large deviation principle for a sequence of point processes dened by Gibbs measures on a compact orientable two- dimensional Riemannian manifold. We see that the corresponding sequence of empirical measures converges to the solution of a partial differential equation and, in some cases, to the volume form of a constant curvature metric. | en_US |
dc.format | application/pdf | |
dc.identifier.uri | http://revistas.pucp.edu.pe/index.php/promathematica/article/view/20244/20195 | |
dc.language.iso | spa | |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.publisher.country | PE | |
dc.relation.ispartof | urn:issn:2305-2430 | |
dc.relation.ispartof | urn:issn:1012-3938 | |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | * |
dc.source | Pro Mathematica; Vol. 30 Núm. 59 (2018) | es_ES |
dc.subject | Desviación grande | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.00 | |
dc.title | A large deviation principle for a natural sequence of point processes on a Riemannian two-dimensional manifold | es_ES |
dc.type | info:eu-repo/semantics/article | |
dc.type.other | Artículo |