Sobre la realidad de las matemáticas
Acceso a Texto completo
Fuente
Areté; Vol. 15, Núm. 1 (2003)Abstract
El artículo trata sobre el objeto de las matemáticas, sobre si éste existe en la realidad o no. El artículo adopta una perspectiva intemporal y, por ello, incoa un diálogo entre físicos o matemáticos contemporáneos y algunas de las reflexiones clásicas sobre el tema. Entre estas últimas, incluye la platónica, la aristotélica, la empirista y la kantiana. Por otra parte, trae a colación la distinción clásica entre via inventionis y via demonstrationis en orden a distinguir las verdades matemáticas, los principios en que ellas pueden resolverse y la forma concreta en que esos principios pueden ser relacionados para construir una demostración. Esto puede arrojar luces sobre por qué las verdades matemáticas pueden ser percibidas por los matemáticos como eternas, aunque los modos de demostrarlas o los contextos puedan ampliarse o variar.---On Mathematics’ Reality”. The paper deals with the object of mathematics, and tries to show if it is real or not. It is written from an intended timeless point of view, and because of that it opens a dialogue between contemporary physicists or mathemat ics and classic ref lect ion on the mat ter. Among those reflections, it embraces the Platonic, Aristotelian, empiricist and Kantian. Moreover, it considers the classic distinction between via inventionis and via demonstrationis, in order to distinguish between mathematical truths, the principles or axioms in which they can be resolved and the concrete ways in which those principles can be interwoven for the construction of a demonstration. This can enlighten the problem of why mathematical truths are perceived by mathematicians as eternal, while the ways through which or the contexts in which they are demonstrated can be amplified or modified.