Departamento Académico de Ingeniería

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/124167

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Miniatura
    ÍtemAcceso Abierto
    Alternative approach for reproducing the in-plane behaviour of rubble stone walls
    (2017) Tarque, Nicola; Camata, Guido; Benedetti, Andrea; Spacone, Enrico
    Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.
  • Miniatura
    ÍtemAcceso Abierto
    Masonry infilled frame structures: state-of-the-art review of numerical modelling
    (2015) Tarque, Nicola; Candido, Leandro; Camata, Guido; Spacone, Enrico
    This paper presents a state-of-the-art review of the nonlinear modelling techniques available today for describing the structural behaviour of masonry infills and their interaction with frame structures subjected to in-plane loads. Following brief overviews on the behaviour of masonry-infilled frames and on the results of salient experimental tests, three modelling approaches are discussed in more detail: the micro, the meso and the macro approaches. The first model considers each of the infilled frame elements as separate: brick units, mortar, concrete and steel reinforcement; while the second approach treats the masonry infill as a continuum. The paper focuses on the third approach, which combines frame elements for the beams and columns with one or more equivalent struts for the infill panel. Due to its relative simplicity and computational speed, the macro model technique is more widely used today, though not all proposed models capture the main effects of the frame-infill interaction.