Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    La hipótesis de Riemann como problema de análisis funcional
    (Pontificia Universidad Católica del Perú, 2021-11-05) Sotelo Pejerrey, Alfredo; Alcántara Bode, Julio Cesar
    J. Alcántara-Bode demuestra en [3] que la Hipótesis de Riemann es verdad si y sólo si el operador integral en L2 (0,1), (Aρf)(o)=So1p(0/x) f(x) dx es inyectivo, dondeρ es la función parte fraccionaria. El operador Aρ es Hilbert-Schmidt, no nuclear y se conoce su determinante de Fredholm. En el presente trabajo de tesis, varias herramientas del análisis funcional son usadas para obtener información adicional no trivial de los operadores Aρ y Aρ (α), donde (Aρ(α)f)(o)= ş10 ρ(αθ/x) f(x)d(x). Usando el teorema de descomposición de Ringrose de Aρ y Aρ(α), brindamos información espectral de sus partes normales y Volterras, así como una estimativa de sus números singulares. Basados en el teorema de Müntz, se demuestran fórmulas que involucran a los operadores Aρ(α) y Aρ(β), aplicamos el lema de Douglas para establecer que h E Ran (Aρ(α)) y Ker (A˚ρ (α))= {0}, para todo 0 < α<1 y h (x)= x. Situado en el contexto de trazas singulares, demostramos que si Aρ pertenece a algún ideal geométricamente estable I de L2 (0,1), entonces τ(Aρ)= 0 para toda τtraza singular no trivial en I. Esto fue posible gracias a los resultados de N. Kalton, A. Albeverio, D. Guido, T. Isola y el hecho que los operadores 1/αAρ(α)- 1/βAρ(β)son Volterra. Finalmente, formulas inductivas son presentadas para calcular las trazas de las potencias de Aρ y Aρ(α), así como la construcción de una familia de isometrías parciales con propiedades muy particulares.
  • Ítem
    Formación de patrones inducidos por un flujo de corte en el modelo de Lotka-Volterra modificado
    (Pontificia Universidad Católica del Perú, 2017-04-28) Balbín Arias, Julio José; Vásquez Rodríguez, Desiderio Augusto
    En esta tesis se analiza la formación de patrones debido a inestabilidades en un sistema de reacción - difusión - advección generadas mediante un flujo de corte. Las inestabilidades son similares a la formación de patrones de Turing en un sistema de activador - inhibidor donde una condición necesaria es que la difusividad del inhibidor es mayor que la difusividad del activador. En presencia de un flujo de corte, nosotros encontramos que esta condición no es necesaria. Nosotros analizamos dos modelos para un flujo de corte, uno de ellos consiste en dos capas moviéndose con diferentes velocidades, el otro correspondiente a un flujo de Poiseuille dentro de un tubo bidimensional. La inestabilidad aparece cuando la velocidad promedio del flujo aumenta por encima de cierta velocidad umbral, conduciendo así a los patrones que se mueven según el marco de referencia del flujo. Nuestros resultados, patrones aislados de Turing, pueden ser obtenidos usando una difusividad efectiva por efecto de la dispersión de Taylor.