Formación de patrones inducidos por un flujo de corte en el modelo de Lotka-Volterra modificado
No hay miniatura disponible
Fecha
2017-04-28
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
En esta tesis se analiza la formación de patrones debido a inestabilidades en un
sistema de reacción - difusión - advección generadas mediante un flujo de corte. Las inestabilidades son similares a la formación de patrones de Turing en un sistema de activador - inhibidor donde una condición necesaria es que la difusividad del inhibidor es mayor que la difusividad del activador. En presencia de un flujo de corte, nosotros encontramos que esta condición no es necesaria. Nosotros analizamos dos modelos para un flujo de corte, uno de ellos consiste en dos capas moviéndose con diferentes velocidades, el otro correspondiente a un flujo de Poiseuille dentro de un tubo bidimensional. La inestabilidad aparece cuando la velocidad promedio del flujo aumenta por encima de cierta velocidad umbral, conduciendo así a los patrones que se mueven según el marco de referencia del flujo. Nuestros resultados, patrones aislados de Turing, pueden ser obtenidos usando una difusividad efectiva por efecto de la dispersión de Taylor.
Descripción
Palabras clave
Dinámica de fluidos, Dispersión (Física), Ecuaciones de Volterra, Teorías no lineales
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess