Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
10 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Predicción de un tiro penal de fútbol basado en la estimación de postura del jugador(Pontificia Universidad Católica del Perú, 2024-06-24) Mauricio Salazar, Josue Angel; Alatrista Salas, HugoEn este artículo se presenta una metodología innovadora para predecir un tiro penal en fútbol basado en la estimación de postura del jugador que ejecuta el disparo haciendo uso de dos herramientas de visión computacional como segmentación semántica en videos y la estimación de postura 3D mediante los métodos TAM y MMPose, respectivamente. Para ello, se construyó un corpus de videos de tiros penales y se han entrenado modelos de aprendizaje profundo para predecir la región del arco a la cual llegará el disparo. Los resultados muestran que el modelo llamado CNN 3D logra una mejor precisión con respecto a los otros modelos entrenados. Además, se ha medido la influencia de distintas partes del cuerpo con respecto a la tarea de predicción, mostrando que las piernas son las partes más influyentes. Por último, implementamos una herramienta web para el entrenamiento de porteros y jugadores de fútbol en tiros penales, ofreciendo de esta manera posibles mejoras en las tácticas de un disparo de tiro penal mediante el uso de la visión computacional.Ítem Texto completo enlazado Generación de imágenes de acciones específicas de una persona utilizando aprendizaje profundo(Pontificia Universidad Católica del Perú, 2024-04-16) Morales Pariona, Jose Ulises; Beltran Castañon, Cesar ArmandoDesde que aparecieron las redes GAN, se han realizado varias investigaciones sobre cómo generar imágenes en diversos ámbitos, como la generación de imágenes, conversión de imágenes, síntesis de videos, síntesis de imágenes a partir de textos y predicción de cuadros de videos. Basándose mayormente en mejorar la generación de imágenes de alta resolución y la reconstrucción o predicción de datos. El propósito de este trabajo es implementar las redes GAN en otros ámbitos, como la generación de imágenes de entidades realizando una acción. En este caso se consideró 3 acciones de personas, que son los ejercicios de Glúteo, Abdomen y Cardio. En primer lugar, se descargaron y procesaron las imágenes de YouTube, el cual incluye una secuencia de imágenes de cada acción. Posteriormente, se separó dos grupos de imágenes, de una sola persona, y de personas diferentes realizando las acciones. En segundo lugar, se seleccionó el modelo InfoGAN para la generación de imágenes, teniendo como evaluador de rendimiento, la Puntuación Inicial (PI). Obteniendo como resultados para el primer grupo, una puntuación máxima de 1.28 y en el segundo grupo, una puntuación máxima de 1.3. En conclusión, aunque no se obtuvo el puntaje máximo de 3 para este evaluador de rendimiento, debido a la cantidad y calidad de las imágenes. Se aprecia, que el modelo si logra diferenciar los 3 tipos de ejercicios, aunque existen casos donde se muestran incorrectamente las piernas, los brazos y la cabeza.Ítem Texto completo enlazado Estimación del carbono almacenado en paisajes agropecuarios y ganaderos a partir de Imágenes multiespectrales capturadas por drones, y técnicas de aprendizaje profundo(Pontificia Universidad Católica del Perú, 2024-01-10) Tovar Galarreta, Juan Carlos Alfredo; Villanueva Talavera, Edwin RafaelLos paisajes agrícolas y ganaderos están estrechamente relacionados con el flujo de carbono, ya que actúan como reservorios de carbono en forma de biomasa. La evaluación de las reservas de carbono almacenadas en estas zonas es importante para apoyar la toma de decisiones que impidan que estas zonas se conviertan en fuentes de emisión de carbono. Sin embargo, las técnicas tradicionales de estimación de las reservas de carbono requieren un muestreo in situ, lo que supone una tarea extenuante, arriesgada, costosa DE escasa cobertura. En este estudio, proponemos una metodología, basada en imágenes multiespectrales capturadas por drones y modelos de aprendizaje profundo, para automatizar la tarea de estimar mapas de reservas de carbono almacenados en paisajes agrícolas y ganaderos. Aplicamos una arquitectura de red neuronal U-Net para discriminar las zonas arbóreas y pastizales. Luego, se desarrolla un modelo basado en redes neuronales convolucionales para la estimación de la densidad de carbono a partir de imágenes multiespectrales. Resultados experimentales en paisajes agrícolas y ganaderos de la Amazonía peruana mostraron la efectividad de la metodología propuesta, reportando un mIoU de 87%, un RMSE de 2.44 para zonas arbóreas, y un RMSE de 1.84 para zonas de pastura. Concluimos que la estimación de la densidad de carbono es alcanzable con el enfoque propuesto. Esta metodología puede ser útil para la toma de decisiones y puede contribuir a la gestión o al control del cambio climático.Ítem Texto completo enlazado Propuesta de un modelo de predicción de cáncer de mama utilizando deep learning(Pontificia Universidad Católica del Perú, 2023-11-03) Páez Cumpa, Jorge Antonio; Palomino Delgado, Henry Edward; Rosado Farfán, Christian Paul; Salazar Huamanjulca, Elmer Ronald; Siccha Ayvar, Hobber ArístidesEn la presente tesis, queremos demostrar y proponer como la tecnología puede ser utilizada por los genetistas y especialistas en oncología como una herramienta para agilizar la detección de cáncer de mama, siendo este el más común en Perú. El diagnóstico temprano es un mecanismo efectivo que ayuda a la reducción de la mortalidad en este tipo de cáncer de tal manera que se pueda seguir un tratamiento adecuado. Actualmente una forma de detectarlo es a través de una prueba genética para identificar mutaciones en los genes BRCA 1 y BRCA 2, sin embargo, este camino contiene pruebas que son difíciles, costosas y lentas, que a su vez requieren una carga de trabajo excesiva por parte de un biólogo o genetista. por tal motivo se tiene como objetivo combinar los factores de riesgo asociados con el cáncer de mamá, incluidas las variaciones genéticas para diseñar un modelo predictivo basados en la inteligencia artificial para determinar si el tumor asociado al cáncer es benigno o maligno. El modelo se diseñó utilizando un algoritmo de redes neuronales logrando obtener un rendimiento de 92% precisión con datos de prueba en tan solo unos minutos. Esta propuesta de modelo de predicción es única en el Perú y puede ser ofrecida por una Gerencia de TI dentro de una organización del sector salud para que posteriormente pueda ser implementada y desplegada por un equipo de científicos de datos.Ítem Texto completo enlazado Pronóstico del precio de cobre utilizando técnicas de aprendizaje profundo(Pontificia Universidad Católica del Perú, 2023-03-06) Carhuas Ñañez, Milton Cesar; Villanueva Talavera, Edwin RafaelPronosticar los precios futuros de cobre es una tarea desafiante dadas las características dinámicas y no lineales de varios factores que afectan el precio del cobre. Este artículo describe modelos de pronóstico, basados en arquitecturas de redes neuronales, para predecir los retornos del precio de cobre en tres horizontes de tiempo: un día, una semana y un mes adelante. Diversas variables se consideran como variables de entrada, como los precios históricos de diferentes materias primas metálicas y variables macroeconómicas globales. Evaluamos los modelos con datos diarios de 2007 a 2020. Los resultados experimentales mostraron que los modelos de salida única presentan un mejor rendimiento predictivo que los modelos de salida múltiple. Las arquitecturas de mejor rendimiento fueron los modelos de memorias largas a corto plazo (LSTM) en datos de prueba.Ítem Texto completo enlazado Análisis de sentimiento en información de medios periodísticos y redes sociales mediante redes neuronales recurrentes(Pontificia Universidad Católica del Perú, 2022-02-06) Zarate Calderon, Gabriel Helard; Beltrán Castañón, César ArmandoEl análisis de sentimiento es un área de investigación importante en el procesamiento de lenguaje natural, la cual está en constante crecimiento especialmente por la generación de grandes volúmenes de información textual, y el avance tecnológico en lo que se refiere al almacenamiento y los algoritmos inteligentes para el análisis de esta. Esta tarea cada vez va tomando más fuerza su uso en diferentes aplicaciones computacionales dado el crecimiento exponencial del uso de medios digitales y redes sociales, las cuales, gracias a la información debidamente procesada, pueden ser muy valiosas para los negocios. Actualmente existen procedimientos ambiguos para la realización de dicha tarea y sobre todo para textos en español y de manera específica para notas periodísticas y publicaciones realizadas en redes sociales, todo ello por el hecho de la escasa cantidad de herramientas existentes para la presente tarea, por ende el proceso de clasificación de las polaridades de los sentimientos expresadas en los textos se realiza de manera manual por expertos en el tema, generándose así resultados ambiguos y sesgados según la experiencia del encargado, lo cual generaba resultados que no eran del todo fiables retándole valor a dicha tarea, además del hecho de que realizarlo de manera totalmente manual resultaba muy pesado y se realizaba en un periodo largo de tiempo. Para la realización de dicha tarea existen múltiples técnicas de aprendizaje de máquina y de aprendizaje profundo que son adecuadas para este, pero en el último año uno de los modelos que va siendo reconocido cada vez más para ser aplicado a resolver problemas de procesamiento de lenguaje natural son los modelos basados en transformers dadas sus buenas capacidades y los resultados que se obtienen con estos. Ante dicha problemática surge la necesidad de investigar más acerca de cómo se vienen implementando soluciones para la realización de análisis de sentimiento para hacer una comparativa sobre los modelos usados y además dadas las buenas capacidades de los modelos basados en transformers investigar más a fondo la utilidad de estos y las aplicaciones que tiene para así comprobar sus buenas capacidades.Ítem Texto completo enlazado Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes(Pontificia Universidad Católica del Perú, 2021-09-30) Córdova Pérez, Claudia Sofía; Villanueva Talavera, Edwin RafaelLa horticultura es una actividad que da trabajo a muchos peruanos en distintas zonas del país, sin embargo, gran parte de la producción de hortalizas es dañada por la alta incidencia de plagas de insectos. En la actualidad, un método efectivo para realizar el control de estas plagas es el uso de trampas pegantes, las cuales atraen y atrapan distintos tipos de insectos. Convencionalmente, las trampas pegantes son colocadas de forma que queden distanciadas uniformemente en el campo donde se realiza el cultivo y luego de varios días se realizan observaciones visuales por parte del personal entrenado en reconocimiento de insectos. No obstante, la información recopilada manualmente por el humano puede no ser tan exacta, pues existen diversos factores que pueden influir en la precisión de esta, por ejemplo, la habilidad de cada persona para detectar distintos tipos de insectos y la posible fatiga que puede ser consecuencia de haber realizado un trabajo manual por mucho tiempo y para una muestra grande de insectos. Las soluciones que se encontraron en la revisión sistemática para tratar problemas de detección de insectos fueron algoritmos de segmentación con cambio de espacio de color, lo cual permite remover el fondo de una imagen y centrarse únicamente en el objeto de interés; también, se encontraron estudios que usaron modelos de detección, los cuales hacen uso de aprendizaje profundo con redes neuronales convolucionales para lograr la identificación de los insectos. Esta última técnica ha dado resultados óptimos en distintos problemas visión computacional, por lo que el presente proyecto de investigación propone usar los modelos de detección pre-entrenados Faster R-CNN y YOLOv4 y aplicarles aprendizaje por transferencia para ajustarlos al problema de detección de tres tipos de plagas de insectos: la mosca blanca, la mosca minadora y el pulgón verde del melocotonero en etapa de adulto alado. Para ello, se debe contar con un corpus de imágenes de trampas pegantes con insectos plaga y, debido a la limitada disponibilidad de estas, se planteó construir un generador de imágenes realistas de trampas pegantes con insectos, el cual tiene en consideración factores realistas como la iluminación y el nivel de ruido en las imágenes, además, se usaron técnicas de segmentación y aumento de imágenes de modo que el corpus obtenido sea el adecuado para la fase de entrenamiento. Finalmente, se midió la métrica mAP de ambos modelos para los tres tipos de insectos. El modelo Faster R-CNN obtuvo 94.06% y el modelo YOLOv4, 95.82%, donde se concluye que el desempeño de ambos detectores es aceptable.Ítem Texto completo enlazado Predicción temporal de calidad del aire en Lima a partir de datos de estaciones de bajo costo y Aprendizaje Automático: una revisión de literatura(Pontificia Universidad Católica del Perú, 2021-08-23) Paredes Salazar, Diego José; Villanueva Talavera, Edwin RafaelEl presente trabajo explora los estudios en los cuales se utilizan técnicas de aprendizaje profundo para realizar predicción temporal de calidad del aire, de manera que se pueda comprender que características tendrían los modelos de aprendizaje profundo que tienen un mejor rendimiento con para realizar esta tarea y puedan utilizarse como línea base para desarrollar modelos similares en el contexto de la ciudad de lima. Esta revisión de literatura se realiza con el objetivo de poder obtener los modelos de aprendizaje profundo que estén teniendo un mejor rendimiento en la actualidad al predecir temporalmente la calidad del aire mediante un procedimiento que garantice objetividad y reproducción de resultados. Para ello, se realiza una revisión sistemática de literatura que garantiza el uso de procedimientos estructurados y definidos para conocer las preguntas de investigación que guían la exploración de los estudios de predicción temporal de calidad del aire, los motores de búsqueda considerados para la revisión y las cadenas de búsqueda asociadas tanto a las preguntas de investigación como los motores de búsqueda, de manera que estas se puedan ejecutar y reproducir la obtención de estudios. Las respuestas se reportan en un formulario de extracción con datos relacionados a las arquitecturas de aprendizaje profundo, limitaciones de los modelos empleados y el rendimiento obtenido por cada modelo en cada estudio. Al finalizar el estudio, se concluye que se puede desarrollar un modelo basado en una arquitectura adecuada de aprendizaje profundo para poder atacar el problema de la predicción inadecuada de calidad del aire en Lima al percatar su efectividad reportada en la literatura para otras localidades en el mundo, considerando que dichos modelos deben tomarse únicamente como una línea base y que deben ajustarse a la localidad de Lima para obtener predicciones adecuadas a su entorno.Ítem Texto completo enlazado Propuesta de mejora en el planeamiento de la producción de botellas aplicando un MPS y pronósticos basados en Deep Learning en una empresa productiva y envasadora de agua en el Callao(Pontificia Universidad Católica del Perú, 2021-05-05) Tupayachi Silva, José Alberto; Carbajal López, EduardoEn los últimos tres años el nivel de venta de agua embotellada para consumo humano en el Perú muestra un crecimiento en las ventas realizadas por las empresas productoras a los supermercados, bodegas, mercados y tiendas de conveniencias, esto se evidencia en el incremento del 3.9% de este sector productivo al cierre del 2017. La facturación de las grandes cadenas de supermercados a nivel nacional ha alcanzado los 14,000 000 PEN con un crecimiento del 5.3% respecto al año 2016. Esto demuestra que este sector económico está en crecimiento por el alto consumo de agua embotellada. La presente empresa a analizar se dedica a la producción de agua embotellada de marca propia y de maquila para sus principales clientes: Cencosud Retail S.A. y Supermercados Peruanos S.A., empresa joven y mediana con 43 trabajadores en planilla presente en el ámbito nacional, de importante participación en el mercado, que a partir del 2017 ha experimentado un fuerte crecimiento tras la priorización de la producción del cliente Supermercados Peruanos S.A en la presente empresa. Sus productos cuentan con 69% de participación a nivel supermercados y en el 2018 presenta un posicionamiento en el mercado que se encuentra dentro del 10.4%, compartiendo el mercado nacional con grandes embotelladoras como AB InBev, CBC Perú, Arca Continental e ISM, cabe resaltar que su portafolio de productos en primer trimestre del 2019 presenta la siguiente composición: Bells 48.04%, Wong 12.32%, Metro 28.11%, Selfie 11.53%. Lo cual representa un crecimiento en ventas respecto al trimestre anterior del 8%, el cual se provee ser mantenido. El aumento de pedidos de la presentación de 2.5L Bells, ha ocasionado que la falta de una planeación en la demanda y el incorrecto manejo de almacenes comiencen a generar problemas incumplimiento de pedidos, en promedio 17% entre los cuales se encuentran el abastecimiento incompleto a clientes, penalidades por entrega tardía, roturas en el stock de producto terminado, baja calidad del producto entre otros. El proceso critico de la empresa se presenta en las áreas de producción y logística. En primer lugar, actualmente se utilizan metodologías para el cálculo de la demanda que no corresponden a la realidad, dado esto, la producción se basa en los pedidos actuales. No se mantiene ningún pronóstico de la demanda útil para producción y se carece de un sistema de inventarios. Como resultado se genera que se incurra en el incumplimiento de los pedidos, acrecentado por el incremento de las ventas en estos últimos años. Se puede observar, según datos del último trimestre del año 2019 la cantidad de agua tratada requerida en diferentes presentaciones ascendió a la cantidad de: 538312.2 L. En segundo lugar, se evidencia de que existe una cantidad considerable de mermas en distintas fases del proceso productivo, se observa que la utilización del agua tratada tiene una eficacia de aproximadamente el 40%, para las etapas de llenado, sellado y empacado, existe un nivel de merma del 8.8% en promedio el cual comprende los recursos utilizados en cada etapa del proceso productivo respectivamente, dado al uso excesivo de las horas extras y de la utilización de los equipos hasta su falla . Se verifico que el número de horas extras por mes en el último trimestre del año 2019 alcanzo 628,5 horas extras en distintas posiciones, es decir se requiere de dichas horas adicionales para la culminación de los pedidos. Lo presente lleva a concluir que se debe plantear una reingeniería en la planificación, inventarios y ritmo de trabajo. Se propondrá solucionar los problemas actuales de la empresa mediante la implementación de un MPS Master Production Schedule a partir del análisis de la demanda apoyado por la aplicación de herramientas de analítica de datos con el cual se pretende implementar un modelo de Deep Learning LTSM y consecuentemente desarrollar una correcta planificación de la producción, establecer un sistema de inventarios y aumentar la productividad a través del TaktTime.Ítem Texto completo enlazado Autonomous control of a mobile robot with incremental deep learning neural networks(Pontificia Universidad Católica del Perú, 2021-03-29) Glöde, Isabella; Morán Cárdenas, Antonio ManuelOver the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance.