Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
16 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Desarrollo de materiales para construcción aditiva a base de tierra estabilizada con polímeros disueltos en agua(Pontificia Universidad Católica del Perú, 2023-11-10) Ñañez Azaña, Robert Erick; Nakamatsu Kuniyoshi, JavierLa industria de la construcción con cemento satisface las principales necesidades de la sociedad: vivienda, salud, transporte, educación, etc. Sin embargo, la producción industrial de cemento es altamente contaminante, representa cerca del 5% de las emisiones globales anuales de CO2. Por otro lado, la construcción con tierra ha sido empleada por las antiguas civilizaciones y actualmente se muestra como una alternativa sostenible y ecoamigable, ya que es un material económico, de fácil disponibilidad, que requiere poco procesamiento, es buen aislante térmico y permite controlar la humedad. A pesar de ello, la construcción con tierra suele tener poca resistencia mecánica y poca durabilidad frente a la erosión por agua. Para contrarrestar estos problemas, se pueden usar aditivos estabilizantes, como soluciones de biopolímeros como la quitosana o el alginato, y fibras naturales como las de sisal. La quitosana es un biopolímero derivado de la quitina, un polisacárido estructural que principalmente se extrae del caparazón de crustáceos. La quitosana es un copolímero compuesto de unidades de N-acetil-β-D-glucosamina y β-D-glucosamina, cuya proporción define el grado de desacetilación. El alginato, que se extrae de las algas pardas, es otro copolímero lineal, compuesto de unidades de β-D-manuronato y α-L-guluronato. Las fibras de sisal se extraen de la especie Agave sisalana. La solución acuosa de quitosana, la solución acuosa de alginato, y las fibras de sisal se emplearon como estabilizantes de las matrices de tierra en esta investigación. En este trabajo se desarrollaron matrices a base de suelo, solución de polímero y fibras de sisal que extruyan por un sistema de impresión 3D en estado fresco y que posean buena resistencia mecánica y durabilidad en estado endurecido. Se caracterizaron el suelo, la quitosana, el alginato y las fibras de sisal. Luego, se desarrollaron las dosificaciones óptimas de las matrices por extrusión con manga de repostería evaluando la calidad de los filamentos y el grado de contracción lineal durante el secado. Las matrices optimizadas fueron SF24, SQF29 (2%), SQF29 (3%) y SAF24 (2%). Se evaluó la resistencia mecánica y la durabilidad de estos filamentos en estado endurecido. Las matrices SQF29 (3%) y SAF24 (2%) mostraron una buena resistencia mecánica de 3,44 MPa y 2,95 MPa, respectivamente; mientras que las matrices SQF29 (2%) y SQF29 (3%) mostraron una buena durabilidad frente al agua en los ensayos de inmersión, permeabilidad y erosión acelerada. Finalmente, las matrices desarrolladas se validaron mediante el sistema de impresión 3D a escala mediana lográndose imprimir columnas pequeñas con diseños de flor con la matriz SF24 y torres cuadradas pequeñas con la matriz SQF29 (3%).Ítem Texto completo enlazado Elaboración y caracterización de esponjas de Alginato con uncaria tomentosa como aditivo para su Aplicación como apósito de heridas(Pontificia Universidad Católica del Perú, 2022-07-13) Donayre Serpa, Reynaldo Alonso; Nakamatsu Kuniyoshi, JavierLas heridas en la piel son una problemática con efectos cada vez más perjudiciales para las personas que las padecen. Esta afirmación es principalmente cierta para las heridas crónicas —heridas que no terminan del curar completamente y muestran procesos de inflamación permanentes—. Esto exige el diseño de apósitos de heridas que muestren respuestas más completas, que no solo contemplen la protección contra la infección, sino otros factores como la absorción efectiva de exudado y la capacidad antioxidante. En este trabajo se estudia el diseño de un apósito de heridas basado en una esponja de alginato que tenga incorporado los beneficios medicinales de un extracto de uña de gato. Como parte de este objetivo, se evalúan las mejores condiciones que permitan la obtención de una esponja con integridad, un buen volumen y una buena capacidad absorbente. Esta última característica fue medida mediante pruebas de hinchamiento a pH 5,5 y 7,5 (simulación de fluido de herida). También se estudia el procedimiento para la obtención del extracto de uña de gato, el cual se caracteriza en base a su contenido total de compuestos fenólicos —por medio de la prueba de Folin-Ciocalteu— y a su capacidad antioxidante equivalente al trolox (TEAC) por el método de ABTS. Por último, se evalúa la capacidad antioxidante por medio de ABTS de la esponja cargada con el extracto, lo que resulta en un apósito que presenta un capacidad alta y prolongada, con un porcentaje de inhibición máximo de aproximadamente 27,5%. Este porcentaje si se compara con el 12,5% de inhibición presentado por la esponja sin extracto, evidencia que se ha podido incorporar las propiedades antioxidantes del extracto a la esponja de alginato. El estudio tiene el valor agregado de trabajar con recursos naturales abundantes en nuestro país, lo que, con proyección a futuro, generaría un mayor impacto.Ítem Texto completo enlazado Membranas de alginato - aloe vera (Aloe barbadensis) con potencial aplicación para apósitos para tratamiento de heridas(Pontificia Universidad Católica del Perú, 2021-12-17) Elgegren Lituma, Mariela; Nakamatsu Kuniyoshi, JavierLos apósitos para heridas son materiales de uso muy común, aunque en su mayoría tienen características que no permiten que el tejido dañado se repare adecuadamente y que el tiempo de curado sea más extenso. Este trabajo propone la elaboración de membranas de alginato y gel de Aloe vera tridimensionales que tengan características para su potencial uso como apósito. El alginato es un biopolímero muy usado en aplicaciones biomédicas por ser biocompatible y no tóxico; mientras que el Aloe vera es una planta muy usada en la medicina tradicional por sus propiedades terapéuticas en el curado de heridas. Primero, se elaboraron membranas bidimensionales de alginato, las cuales se entrecruzaron con CaCl2 (entre 0,5% y 5%, w/v) y se determinó que a mayor concentración de CaCl2 disminuye la capacidad de hinchamiento del film. Asimismo, se elaboraron membranas de alginato con glicerol y de alginato con Aloe vera donde se determinó que el glicerol le otorga mayor flexibilidad al film y que la incorporación de Aloe vera aumenta el porcentaje de hinchamiento en buffer de acetato a pH 5,5 y 37,5˚C. Por otro lado, se formaron micropartículas de alginato y gel de Aloe vera para formar membranas tridimensionales y se determinó el espesor, se analizó la superficie por SEM y se caracterizó por espectroscopía FT-IR. Asimismo, se evaluó su capacidad de hinchamiento en buffer acetato a pH 5,5 y 37,5˚C, su carácter hidrofílico, actividad antioxidante y proceso de degradación en diferentes medios (pH 5,5; 7,5 y 8,5). Las membranas varían entre 18,42 a 25,25 μm de espesor, son de carácter hidrofílico, que, al incrementarse el contenido del gel de Aloe vera, aumenta el porcentaje de hinchamiento y que en el medio de pH a 7,5 es donde hay una menor degradación del film; sin embargo, no presentan actividad antioxidante. Por último, se elaboró un film tridimensional de alginato y extracto de uña de gato, el cual tiene una alta actividad antioxidante.Ítem Texto completo enlazado Estudio del avance de la reacción de geopolimerización del residuo de catalizador de craqueo catalítico de petróleo(Pontificia Universidad Católica del Perú, 2021-11-12) Castañeda Estremadoyro, Álvaro Alejandro; Nakamatsu Kuniyoshi, JavierLos geopolímeros son materiales de construcción preparados a partir de residuos industriales ricos en aluminio y silicio mediante su activación con una solución compuesta de silicato sódico e hidróxido de sodio. Estos materiales tienen un gran potencial debido a que pueden cumplir las mismas funciones que el cemento Portland ordinario (OPC por sus siglas en inglés), pero emitiendo menor cantidad de gases de efecto invernadero durante su producción. Se ha estudiado bastante la reacción de geopolimerización y las propiedades mecánicas de geopolímeros sintetizados a partir de fly ash, sin embargo, no se ha expandido esta investigación a otra clase de residuos ricos en silicio y aluminio, tal como el producido durante la refinación del petróleo: el residuo de catalizador de craqueo catalítico (SFCC por sus siglas en inglés). En el presente trabajo se estudiaron los geopolímeros preparados a partir de este material, se desarrolló un método para detener la reacción de geopolimerización, mediante la liofilización de geopolímeros, se desarrolló un estándar interno para facilitar el seguimiento de la reacción de geopolimerización utilizando espectroscopía ATR-IR y, además, se estudió el efecto de la cantidad de agua y silicato soluble en la reacción de geopolimerización mediante difracción de rayos X y espectroscopía infrarroja de reflectancia total atenuada. Durante este estudio se observó que una mayor cantidad de agua apoya las etapas iniciales de la reacción, pero ralentiza las etapas finales. La cantidad de Si en el medio también juega un rol fundamental: en este trabajo se observó que cantidades muy altas y muy bajas del mismo pueden afectar negativamente la reacción de formación de geopolímero.Ítem Texto completo enlazado Modificación superficial de polímeros por tratamientos químicos y físicos(Pontificia Universidad Católica del Perú, 2021-07-19) Ñañez Azaña, Robert Erick; Nakamatsu Kuniyoshi, JavierLos polímeros son materiales económicos y fáciles de procesar que cuentan con excelentes propiedades intrínsecas físicas y químicas. En la actualidad, se utilizan en numerosas aplicaciones remplazando a materiales más tradicionales como la madera, el vidrio o el metal. No obstante, existen aplicaciones que requieren de propiedades superficiales especiales que los polímeros no suelen poseer. Por este motivo, ha adquirido gran interés el desarrollo de técnicas que permiten modificar la superficie de los polímeros y mejorar su desempeño sin afectar sus excelentes propiedades intrínsecas. En este trabajo se presentan los aspectos principales a tener en cuenta al momento de modificar la superficie de un polímero con tratamientos químicos y físicos. Estos aspectos incluyen las características generales de los tratamientos de modificación, los reactivos más comunes, el tipo de especies activas presentes en los tratamientos físicos (radicales libres, iones, radiación, electrones, entre otros), algunas aplicaciones relativamente recientes y las principales ventajas y desventajas de dichos procedimientos. Asimismo, se explican brevemente algunas de las propiedades superficiales más comunes que se desean modificar y las herramientas experimentales que se utilizan para analizar los cambios producidos en la superficie del polímero. Finalmente, se realiza una comparación de las técnicas de modificación superficial en función a los grupos funcionales generados, el cambio de la morfología o rugosidad, el fenómeno de envejecimiento del polímero modificado y la factibilidad de la implementación a escala industrial.Ítem Texto completo enlazado Estudio químico de la reacción de geopolimerización en medio alcalino(Pontificia Universidad Católica del Perú, 2020-04-07) Castañeda Estremadoyro, Álvaro Alejandro; Nakamatsu Kuniyoshi, JavierLos geopolímeros son materiales de construcción alternativos al concreto común, los cuales pueden cumplir la misma función, pero sin generar grandes cantidades de gases de efecto invernadero. Estos son preparados a partir de una materia prima rica en aluminio y silicio, la cual es activada mediante la adición de una solución acuosa de hidróxido de sodio y silicato soluble. La materia prima utilizada puede ser un residuo de alguna industria o proceso, por ejemplo, el generado de la producción de silicio elemental, la producción de energía mediante el consumo de combustibles fósiles y de la producción de acero. También se pueden utilizar derivados de minerales como materias primas para la preparación de geopolímeros, siendo el metacaolín la materia prima más utilizada de esta categoría. El presente trabajo describe los estudios realizados con el fin de elucidar el rol de cada uno de los componentes de la solución activadora y la materia prima en la formación y características del geopolímero. Se ha estudiado el efecto del silicato y del hidróxido de sodio en la disolución de la materia prima, y se encontró que ambos cumplen un rol importante en este proceso y en la cinética de la reacción. Asimismo, se ha estudiado el efecto de la velocidad de liberación del aluminato y silicato de la materia prima, la liberación de estas especies afecta tanto a la composición final del geopolímero, como a la cinética de la reacción. Finalmente, se ha estudiado el efecto de las condiciones de curado y la cantidad de hidróxido de sodio en las propiedades mecánicas de estos materiales, se ha encontrado una relación clara entre estos parámetros y la resistencia a la compresión del geopolímero formado.Ítem Texto completo enlazado El uso de biomateriales naturales en la elaboración de apósitos para heridas: las membranas de alginato(Pontificia Universidad Católica del Perú, 2020-03-03) Donayre Serpa, Reynaldo Alonso; Nakamatsu Kuniyoshi, JavierLa piel es un órgano de gran importancia para el ser humano por la extensa cantidad de funciones que cumple. En esta gran importancia estriba el interés que se tiene por diseñar sistemas cada vez más efectivos para la curación de heridas, que permitan una rápida recuperación de las funciones interrumpidas de protección y homeostasis, principalmente. En esta búsqueda por apósitos más efectivos, los biomateriales cumplen un rol central por el gran potencial que presentan. En este trabajo se realiza una revisión de algunos estudios que elaboran apósitos a partir de diversos biomateriales sintéticos y naturales (de origen proteico y polisacárido) y que, además, evalúan las propiedades de dichos materiales y su rol en el proceso de curación. En base a estos estudios y a las características propias de los biomateriales con los que se elaboran, se presentan ventajas y desventajas de los apósitos para su uso en la reparación del tejido dañado. En especial, el trabajo se centra en el alginato, polisacárido natural que posee características valiosas para su uso, como la capacidad para gelar en presencia de algunos cationes divalentes, y su carácter biocompatible y absorbente. Después de un detallado análisis de la estructura, proceso de obtención, caracterización y propiedades de este polímero, se estudian tres diferentes membranas que se pueden elaborar en base a éste: las películas, los hidrogeles y las esponjas de alginato. Para cada una de estas membranas se revisan las investigaciones en las que han sido utilizadas como apósitos para el tratamiento de heridas. También se evalúan los resultados obtenidos en dichos trabajos y se analiza cómo las características estructurales propias de cada membrana podrían mejorar el tratamiento de heridas.Ítem Texto completo enlazado Obtención de quitosanas con peso molecular y grado de acetilación controlados(Pontificia Universidad Católica del Perú, 2020-01-23) Sánchez Zárate, Luis Felipe Alberto; Nakamatsu Kuniyoshi, JavierLa quitina es un polisacárido estructural que se encuentra en algunos crustáceos, insectos, hongos y levaduras. La desacetilación de la quitina produce quitosana, la cual ha sido estudiada por su alto potencial en aplicaciones como el transporte de fármacos, la absorción de iones metálicos, membranas e ingeniería de tejidos. La quitosana es un copolímero lineal conformado por unidades N-acetil-D-glucosamina y D-glucosamina. Las propiedades fisicoquímicas y mecánicas de la quitosana están determinadas principalmente por tres parámetros: el grado de acetilación (DA) y el peso molecular (Mw). La gran mayoría de estudios reportados se han realizado con quitosanas extraídas de distintas fuentes y por diferentes métodos, por ello es de espera que cada una de estas quitosanas tengan diferentes DA y Mw, y con ello diferentes propiedades. Además, varios estudios no reportan todos los parámetros antes mencionados. Así, en algunos casos, se reportan diferencias en las propiedades con, por ejemplo, solubilidad, viscosidad y ángulo de contacto. Esto genera incongruencia en las propiedades reportadas sobre la quitosana. Por lo mencionado, es importante contar con muestras de quitosana a medida; es decir, con características estructurales conocidas y que se hayan determinado rigurosamente. En este trabajo se evaluaron métodos que permiten obtener estas quitosanas a medida, con Mw y DA específicos, este se realizó a partir de una quitosana de un DA igual a 10,6% y su posterior reacetilación con anhidrido acético en medio acuoso ácido y con cloruro de acetilo en un líquido iónico en los que se obtuvo valores de DA entre 28 y 89%. Además, se evaluaron formas para reducir el Mw de manera controlada con la aplicación de ultrasonido y la hidrolisis en medio ácido, en los que se obtuvo valores de Mw entre 131 y 1300 kDa. Estos dos parámetros mencionados se determinaron por espectroscopía de resonancia magnética nuclear, espectroscopía infrarroja, cromatografía de permeación en gel y viscosimetría capilar.Ítem Texto completo enlazado Síntesis de hidrogeles con derivado de quitosana y caracterización de sus propiedades fisicoquímicas y mecánicas(Pontificia Universidad Católica del Perú, 2019-09-16) Gonzales Rojas, Karen Nonaquina; Nakamatsu Kuniyoshi, JavierEl objetivo principal del presente estudio fue la síntesis de hidrogeles de poliacrilamida e hidrogeles de poli(acrilamida-co-ácido acrílico) ambos con entrecruzamiento con N, N´- bismetilenacrilamida (MBAm) y derivado de quitosana (DCHI). Este último fue obtenido a partir del uso de clorhidrato de 1-etil-3- (3-dimetilaminopropil) carbodiimida como agente de acoplamiento para enlazar el ácido acrílico a la quitosana. Los hidrogeles fueron estudiados mediante técnicas de caracterización de microscopía electrónica de barrido (SEM), calorimetría diferencial de barrido (DSC), ensayos mecánicos de compresión, de reología oscilatoria, así como la velocidad de hinchamiento o absorción de agua. Además, se evaluó las diferencias entre el agente de entrecruzamiento MBAm y el derivado de quitosana en una matriz de poliacrilamida, y sus efectos sobre las propiedades finales de los hidrogeles. Las micrografías SEM obtenidas de los cortes transversales de los hidrogeles liofilizados permitieron observar las estructuras internas con poros interconectados, la forma y tamaño que tienen dichos poros, y su dependencia en función del tipo de formulación. La influencia del tipo de microestructura de cada hidrogel se vio reflejada en su capacidad de hinchamiento en agua. La capacidad de hinchamiento mínima fue de 2300 % y la más alta fue de 6800 % de agua absorbida. Los hidrogeles sometidos a ensayos de compresión, permitieron obtener curvas de esfuerzo – deformación, de donde se determinó los valores del módulo elástico, siendo el valor mínimo alcanzado de 0,068 MPa y el máximo de 0,23 MPa. Los ensayos de reología se pudo determinar el rango de viscoelasticidad lineal, el módulo elástico (G´) y viscoso (G´´), teniendo como comportamiento elástico predominante para todos los hidrogeles (G´ > G´´). Además, de los ensayos oscilatorios en función de la frecuencia, se determinó la densidad de entrecruzamiento teórico usando la teoría de elasticidad del caucho. Finalmente, se pudo concluir que, al aumentar la densidad de entrecruzamiento, las propiedades mecánicas y reológicas de los hidrogeles también aumentan. Sin embargo, la capacidad de hinchamiento en agua disminuye. Además, los hidrogeles derivados de quitosana tuvieron mejores propiedades en comparación a los hidrogeles basados en poliacrilamida.Ítem Texto completo enlazado Recuperación de bisfenol-A a partir de policarbonato(Pontificia Universidad Católica del Perú, 2019-05-27) Ortiz Rodríguez, Bruno Alonso; Nakamatsu Kuniyoshi, JavierEl uso de policarbonato como producto de consumo masivo a nivel mundial se ha incrementado considerablemente durante la última década. Esto lleva consigo una preocupante generación de desechos de dicho polímero. Por ello, se tiene un fuerte interés en desarrollar formas de reciclaje que permitan, no sólo reducir el problema de sus desechos, sino también recuperar el monómero que lo compone para que este pueda ser reutilizado. Para esto, se estudió la despolimerización de policarbonato de bisfenol-A con calentamiento convencional por metanólisis usando tolueno como co-solvente en un medio básico, en presencia de un agente reductor y bajo atmósfera de nitrógeno. Se evaluaron los efectos del tiempo de reacción, temperatura, uso del agente reductor y atmósfera de nitrógeno, el proceso de recuperación del monómero, la proporción de solventes frente al policarbonato, el uso de dos fuentes de policarbonato (bidones y discos compactos) y el cambio de co-solventes (acetona y acetonitrilo). Se alcanzó un rendimiento de recuperación del monómero bisfenol-A de hasta 90% luego de 3 horas de reacción usando tolueno como co-solvente. También se demostró la posibilidad de reemplazar el tolueno por acetona o acetonitrilo. Además, se demostró que se podía realizar la reacción mencionada usando calentamiento por microondas. En este caso, se demostró que no es necesario el uso de un co-solvente y se alcanzó rendimientos de recuperación de BPA de hasta 92% en menos de 10 minutos de reacción. También se evaluó el poder de hinchamiento de diversos solventes sobre el policarbonato. Los solventes evaluados se indican a continuación en orden descendente según su poder de hinchamiento: tolueno, acetato de etilo, acetona, acetonitrilo y metanol. La reacción de despolimerización de policarbonato por metanólisis en microondas demostró ser mucho más eficiente que por calentamiento convencional, ya que se obtiene un mayor o igual rendimiento en un menor tiempo y sin utilizar co-solventes.