Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Segmentación semántica de escenas urbanas de la provincia de Huamanga(Pontificia Universidad Católica del Perú, 2024-09-10) Pasapera Huaman, Lui Gustavo; Flores Espinoza, Donato AndrésLa presente tesis se enfoca en la identificación y clasificación de objetos en escenas urbanas de la provincia de Huamanga, explorando un entorno diferente al de las ciudades desarrolladas y otras bases de datos existentes. Se estudiarán las escenas urbanas de Huamanga para segmentar imágenes en 7 clases de datos: personas, vehículos, motociclistas, edificios, veredas, pistas y otros, que incluyen detalles de cielo y cables de energía eléctrica. El enfoque principal de la tesis estará centrado en la visión por computadora, específicamente en la segmentación semántica para la clasificación de objetos. Para ello, se emplearán arquitecturas de aprendizaje profundo pre-entrenadas adaptadas a Deeplabv3+, y se utilizarán imágenes de la provincia de Huamanga como base de datos local. La investigación se inicia con un análisis del estado del arte, destacando la importancia de la clasificación de objetos en escenas urbanas y los beneficios del aprendizaje profundo en comparación con métodos tradicionales. Se enfatiza la necesidad de utilizar bases de datos locales sobre las existentes, así como la base teórica para la clasificación de imágenes locales utilizando Deeplabv3+ y redes de aprendizaje profundo mediante la transferencia de aprendizaje. Posteriormente, se describe el diseño, la recopilación y el enfoque de la base de datos locales en comparación con conjuntos de datos como Imagenet y CityScapes, utilizando la arquitectura Deeplabv3+ junto con redes de aprendizaje profundo en los datos locales. Finalmente, se presentan los resultados basados en el incremento del número de datos, analizando la precisión, el Índice de Jaccard (IoU) y el mBFScore tanto a nivel global como por clase, junto con un análisis comparativo con la base de datos Cityscapes. Se proporcionan tablas sumarias que verifican los resultados de cada red de aprendizaje profundo y se propone hardware para dispositivos capaces de ejecutar tareas de segmentación semántica.Ítem Texto completo enlazado Estudio de la segmentación semántica para la navegación autónoma de un vehículo que circula en las calles de la provincia de Huamanga(Pontificia Universidad Católica del Perú, 2021-02-02) Pasapera Huamán, Lui Gustavo; Flores Espinoza, Donato AndrésLa detección de objetos y geolocalización son puntos clave en los sistemas de visión por computadora y su aplicación para la conducción autónoma. Le permite a la computadora el análisis de entorno en la medida que detecta objetos que podrían obstaculizar una determinada ruta, trayectorias a través del reconocimiento de carriles y mayor exactitud para la geolocalización a través de la detección de objetos relevantes en un determinado entorno. Una de las herramientas para la visión por computadora es la implementación de las redes de aprendizaje profundo. En los últimos años han tenido mayor acogida por su capacidad en el poco esfuerzo en cuanto a su clasificación manual o métodos clásicos. Si bien es cierto que necesita millones de imágenes para obtener un resultado aceptable, esto se ha ido mejorando a través de la transferencia de aprendizaje ya que reduce los millones de imágenes a miles. Estos miles de imágenes se consideran como los datos locales las cuales se analizan, clasifican y re-entrenan con una arquitectura de red pre-entrada. El presente trabajo de investigación se basa en el estudio del uso de los aprendizajes adquiridos por cada red de aprendizaje profundo tales como Resnet-18, Resnet-50, Mobilenetv2 y Xception con el fin de aprovechar su acceso e implementación en estructuras de segmentación semántica basadas en redes convolucionales tales como Segnet y Deeplab.