Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Active noise control for motors in operating range from 200 TO 3000 RPM and noise levels around 90 dBA(Pontificia Universidad Católica del Perú, 2023-04-27) Lengua Arteaga, Juan Carlos Rajit; Calderón Chavarri, Jesús AlanLa continua exposición al ruido es un mal que podría generar un efecto adverso para la salud. Sin embargo, es considerado como un efecto inherente a los procesos industriales, incluso propio de áreas comerciales en las que es difícil fiscalizar debido al alto tránsito y congestión vehicular. No obstante, en muchos casos se ha tratado de reducir sus efectos utilizando mecanismos pasivos como el uso de materiales absorbentes, los cuales, a pesar de ser efectivos en algunos casos, pueden resultar insuficientes para cancelar ruido a bajas frecuencias. Por otro lado, puede ser impráctico para zonas en las que el espacio es limitado. En busca de resolver estas desventajas, mecanismos de control activo, en los que es necesario tener fuentes secundarias de sonido, se han desarrollado para la cancelación del ruido mediante interferencia destructiva. Debido a que una segunda fuente de sonido es necesaria, dicha fuente necesitará controlarse mediante un algoritmo que pueda obtener la superposición deseada. En el presente trabajo, algoritmos de control activo de ruido son analizados, simulados e implementados. Así mismo, se presenta al algoritmo Least-Mean-Square como el más conveniente en control de ruido. Finalmente, motores eléctricos y de combustión interna dentro del rango de 200 a 3000 RPM (revoluciones por minuto), los cuales generan alrededor de 90 dB de ruido, son evaluados.Ítem Texto completo enlazado Optimal control for a prototype of an active magnetic bearing system(Pontificia Universidad Católica del Perú, 2017-05-24) Aragón Ayala, Danielo Eduardo; Tafur Sotelo, Julio César; Calderón Chavarri, Jesús AlanFirst applications of the electromagnetic suspension principle have been in experimental physics, and suggestions to use this principle for suspending transportation vehicles for high-speed trains go back to 1937. There are various ways of designing magnetic suspensions for a contact free support, the magnetic bearing is just one of them [BCK+09]. Most bearings are used in applications involving rotation. Nowadays, the use of contact bearings solves problems in the consumer products, industrial machinery, or transportation equipment (cars, trucks, bicycles, etc). Bearings allow the transmition of power from a motor to moving parts of a rotating machine [M+92]. For a variety of rotating machines, it would be advantageous to replace the mechanical bearings for magnetic bearings, which rely on magnetic elds to perform the same functions of levitation, centering, and thrust control of the rotating parts as those performed by a mechanical bearing. An advantage of the magnetic bearings (controlled or not) against purely mechanical is that magnetic bearings are contactless [BHP12]. As a consequence these properties allow novel constructions, high speeds with the possibility of active vibration control, operation with no mechanical wear, less maintenance and therefore lower costs. On the other hand, the complexity of the active (controlled) and passive (not controlled) magnetic bearings requires more knowledge from mechanics, electronics and control [LJKA06]. The passive magnetic bearing (PMB) presents low power loss because of the absence of current, lack of active control ability and low damping sti ness [FM01, SH08]. On the other hand, active magnetic bearing (AMB) has better control ability and high sti ness, whereas it su ers from high power loss due to the biased current [JJYX09]. Scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, not controlled magnetic bearings are physically unstable and controlled systems only provide proper sti ness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in microprocessing controllers that allow for con dent and robust active control [CJM04]. Magnetic bearings operate contactlessly and are therefore free of lubricant and wear. They are largely immune to heat, cold and aggressive substances and are operational in vacuum. Because of their low energy losses they are suited for applications with high rotation speeds. The forces act through an air gap, which allows magnetic suspension through hermetic encapsulations [Bet00].