Graphs and Equivariant Cohomology

dc.contributor.authorQuispe, Ariana
dc.contributor.authorMendoza, Alexandra
dc.contributor.authorGuzmán, Alejandra
dc.date.accessioned2020-12-09T16:39:32Z
dc.date.available2020-12-09T16:39:32Z
dc.date.issued2020
dc.description.abstractLet X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph.es_ES
dc.identifier.urihttp://repositorio.pucp.edu.pe/index/handle/123456789/173454
dc.language.isoenges_ES
dc.publisherPontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigaciónes_ES
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/es_ES
dc.subjectAlgebraic torus actionses_ES
dc.subjectCellular decompositionses_ES
dc.subjectEquivariant cohomologyes_ES
dc.subjectGKM theoryes_ES
dc.subjectGKM graphses_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#5.09.01
dc.titleGraphs and Equivariant Cohomologyes_ES
dc.typeinfo:eu-repo/semantics/workingPaper
dc.type.otherDocumento de trabajo

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Texto Académico final.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
Texto académico

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: