Graphs and Equivariant Cohomology
Archivos
Fecha
2020
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigación
DOI
Resumen
Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points
and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph.
Descripción
Palabras clave
Algebraic torus actions, Cellular decompositions, Equivariant cohomology, GKM theory, GKM graphs
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess