Scikit-neuromsi: a generalized framework for modeling multisensory integration
Cargando...
Archivos
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Multisensory integration is a fundamental neural mechanism crucial for understanding cognition. Multiple theoretical models exist to account for the computational processes underpinning this mechanism. However, there is an absence of a consolidated framework that facilitates the examination of multisensory integration across diverse experimental and computational contexts. We introduce Scikit-NeuroMSI, an accessible Python-based open-source framework designed to streamline the implementation and evaluation of computational models of multisensory integration. The capabilities of Scikit-NeuroMSI were demonstrated in enabling the implementation of multiple models of multisensory integration at different levels of analysis. Furthermore, we illustrate the utility of the software in systematically exploring the model’s behavior in spatiotemporal causal inference tasks through parameter sweeps in simulations. Particularly, we conducted a comparative analysis of Bayesian and network models of multisensory integration to identify commonalities that may enable to bridge both levels of description, addressing a key research question within the field. We discuss the significance of this approach in generating computationally informed hypotheses in multisensory research. Recommendations for the improvement of this software and directions for future research using this framework are presented.
Descripción
Palabras clave
Multisensory integration, Causal inference, Scientific software, Computational neuroscience, Computational models, Software para computadoras, Python (Lenguaje de programación para computadoras), Neurociencia computacional
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess

