A Model to Improve the Estimation of Baseline Retail Sales
Archivos
Fecha
2011
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú. CENTRUM
DOI
Resumen
This paper develops more accurate and robust baseline sales estimates (sales in the absence of price promotion) using a dynamic linear model (DLM) enhanced with a multiple structural change model (MSCM). We first discuss the value of utilizing aggregated (chain-level) vs. disaggregated (store-level) point-of-sale (POS) data to estimate baseline sales and to measure promotional effectiveness. We then present the practical advantage of the DLM-MSCM modeling approach using aggregated data, and we propose two tests to determine the superiority of a particular baseline estimate: the minimization of weekly sales volatility and the existence of no correlation with promotional activities in these estimates. Finally, we test this new baseline against the industry standard ones on the two measures of performance. Our tests find the DLM-MSCM baseline sales to be superior to the existing log-linear models by reducing the weekly baseline sales volatility by over 80% and by being uncorrelated to promotional activities.
Descripción
Palabras clave
Baseline sales, Consumer packaged goods, Dynamic linear models, Marketing, Multiple structural change model, Promotions, Sales
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess