Nondegenerate germs of holomorphic foliations with prescribed holonomy

Cargando...
Miniatura

Fecha

Título de la revista

ISSN de la revista

Título del volumen

Editor

Springer

Acceso al texto completo solo para la Comunidad PUCP

Resumen

We are interested in characterizing the holonomy maps associated to integral curves of nondegenerate singularities of holomorphic vector fields. Such a description is well-known in dimension 2 where is a key ingredient in the study of reduced singularities. Themost intricate case in the 2 dimensional setting corresponds to (Siegel) saddle singularities. This work treats the analogous problem for saddles in higher dimension. We show that any germ of holomorphic biholomorphism, in any dimension, can be obtained as the holonomy map associated to an integral curve of a saddle singularity. A natural question is whether we can prescribe the linear part of the saddle germ of vector field provided the holonomy map. The answer to this question is known to be positive in dimension 2.We see that this is not the case in higher dimension. In spite of this, we provide a positive result under a natural condition for the holonomy map.

Descripción

Palabras clave

Holomorphic vector field, Singularities of vector fields, Holonomy of a Foliation, Campos vectoriales, Funciones holomorfas, Grupos de holonomía

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess