Nondegenerate germs of holomorphic foliations with prescribed holonomy
Cargando...
Archivos
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Acceso al texto completo solo para la Comunidad PUCP
Resumen
We are interested in characterizing the holonomy maps associated to integral curves of nondegenerate
singularities of holomorphic vector fields. Such a description is well-known in
dimension 2 where is a key ingredient in the study of reduced singularities. Themost intricate
case in the 2 dimensional setting corresponds to (Siegel) saddle singularities. This work
treats the analogous problem for saddles in higher dimension. We show that any germ of
holomorphic biholomorphism, in any dimension, can be obtained as the holonomy map
associated to an integral curve of a saddle singularity. A natural question is whether we can
prescribe the linear part of the saddle germ of vector field provided the holonomy map. The
answer to this question is known to be positive in dimension 2.We see that this is not the case
in higher dimension. In spite of this, we provide a positive result under a natural condition
for the holonomy map.
Descripción
Palabras clave
Holomorphic vector field, Singularities of vector fields, Holonomy of a
Foliation, Campos vectoriales, Funciones holomorfas, Grupos de holonomía
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess

