Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
Cargando...
Archivos
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Flame acceleration plays an important role in determining the onset of deflagration-to-detonation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separation distance between obstacles (S) inside a 1050 mm closed duct on the acceleration of premixed flames fueled by a stoichiometric methane/air mixture at 40 kPa pressure. The studied duct geometry features a 96 mm x 96 mm square cross section and includes five obstacles along the wall with a 75% blockage ratio, each delineated by side dimensions of 96 mm x 96 mm and square holes of 48 mm x 48 mm. Experimental and direct numerical simulations (DNS) techniques are employed here to investigate the flame acceleration dynamics under different operating conditions. More specifically, high-speed video captures the dynamics of the flame front evolution from experiments, while DNS are carried out using the PeleC fully compressive Navier Stokes solver, including finite-rate chemistry and adaptive mesh refinement (AMR). A comparison between experimental and numerical results for S = 1.0 Dₕ shows reasonable agreement in flame tip velocity and reduced position, supporting the applicability of a two-dimensional DNS model like the one employed here. In contrast, for S = 1.5 Dₕ the numerical results fail to reproduce the experimentally observed flame structure and acceleration, likely due to missing three-dimensional effects. Numerical simulations for different S values ranging from 0.75 to 1.5 Dₕ reveal that obstacle spacing has a strong influence on flame acceleration mechanisms. As S increases indeed, the flame shifts from geometry-constrained jetting to instability-driven propagation involving vortex generation and pressure-wave interactions. The case with S = 1.25 Dₕ yields the highest flame tip velocity, even though the one with S = 1.5 Dₕ exhibits greater vorticity and pressure amplitudes. This is attributed to the reduced flame–vortex coupling coherence in the S = 1.5 Dₕ case, which results in more chaotic flame dynamics and lower flame acceleration efficiency. These results offer new insight into the mechanisms of flame acceleration under confinement and highlight obstacle spacing as a key design parameter for optimizing performance and safety in combustion systems.
Descripción
Palabras clave
Flame acceleration, Obstacle separation, Methane/air mixture, Experiments, Numerical modeling, Metanol, Combustibles
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess

