Price and Spatial Distribution of Office Rental in Madrid: A Decision Tree Analysis

dc.contributor.authorCamacho, Máximo
dc.contributor.authorRamallo, Salvador
dc.contributor.authorRuiz, Manuel
dc.date.accessioned2021-06-08T22:59:30Z
dc.date.available2021-06-08T22:59:30Z
dc.date.issued2021-05-06
dc.description.abstractIn this paper, we assess the drivers of office rental prices in the municipality of Madrid with a sample of 4,721 offices in March, 2020. The estimation was performed using the decision tree approach, which was built with a random forest algorithm. This technique allows us to capture the strong nonlinear component in the relation between price and its drivers, mainly geospatial location. Through a stratified analysis, we find out that the willingness to pay high rent in the center of Madrid is a feature of particular relevance to medium-sized offices. For diferent reasons, we also find out some office clusters located far from the city center with high rent for both large and small offices.en_US
dc.formatapplication/pdf
dc.identifier.doihttps://doi.org/10.18800/economia.202101.002
dc.identifier.urihttp://revistas.pucp.edu.pe/index.php/economia/article/view/23752/22670
dc.language.isoeng
dc.publisherPontificia Universidad Católica del Perú. Fondo Editoriales_ES
dc.publisher.countryPE
dc.relation.ispartofurn:issn:2304-4306
dc.relation.ispartofurn:issn:0254-4415
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourceEconomía; Volume 44 Issue 87 (2021)es_ES
dc.subjectSpatial economicen_US
dc.subjectRandom foresten_US
dc.subjectNonlinearen_US
dc.subjectOfficesen_US
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.01
dc.titlePrice and Spatial Distribution of Office Rental in Madrid: A Decision Tree Analysises_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo

Files