Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
No hay miniatura disponible
Fecha
2021-05-06
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú. Fondo Editorial
Resumen
The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.
Descripción
Palabras clave
Random missing data, Two stage estimators, Imputation, Spatial lag model, Spatial lag model
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess