Big Data Analytics Based on Logistical Models

dc.contributor.authorNywlt, Johannes
dc.contributor.authorGrigutsch, Michael
dc.date.accessioned2023-07-21T19:18:24Z
dc.date.available2023-07-21T19:18:24Z
dc.date.issued2015
dc.description.abstractOver the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper describes how logistical models can be used to conduct big data analytics. It will be explained how such logistic-oriented big data analyses can be applied to improve the logistical performance of producing companies. The results will be illustrated with the help of a best practice project.en_US
dc.identifier.urihttps://repositorio.pucp.edu.pe/index/handle/123456789/194842
dc.language.isoeng
dc.publisherPontificia Universidad Católica del Perú. CENTRUM
dc.publisher.countryPE
dc.relation.ispartofurn:issn:1851-6599
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourceJournal of CENTRUM Cathedra, Vol. 8, Issue 1
dc.subjectAnalyticsen_US
dc.subjectBig dataen_US
dc.subjectCompetitive advantageen_US
dc.subjectLogistical modelsen_US
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.04
dc.titleBig Data Analytics Based on Logistical Modelsen_US
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo

Archivos

Bloque original

Mostrando 1 - 1 de 1
Miniatura
Nombre:
JCC-8.1-105.pdf
Tamaño:
196.43 KB
Formato:
Adobe Portable Document Format
Descripción:
Texto completo