Webs planos y foliaciones Galois

dc.contributor.advisorMarín Pérez, David
dc.contributor.advisorFalla Luza, Maycol
dc.contributor.authorBeltrán Cortez, Andrés William
dc.date.accessioned2014-10-23T17:02:25Z
dc.date.available2014-10-23T17:02:25Z
dc.date.created2014
dc.date.issued2014-10-23
dc.description.abstractUn k−web W viene dado por una ecuación diferencial ordinaria de primer orden definida de forma implícita por un polinomio de grado k que puede entenderse como una estructura geométrica descrita localmente por k−foliaciones en posición general. La geometría de webs es el estudio de invariantes de familias finitas de foliaciones y fue iniciado por Blaschke y su escuela a inicios de la década de 1920 en Hamburgo. Uno de los resultados emblemáticos obtenido por él junto con Dubordieu, es el que caracteriza la equivalencia local de un germen de un 3−web W en el plano complejo con el 3−web definido por dx · dy · d(x+ y) a través del anulamiento de un covariante diferencial: la curvatura K(W) del web W, que es una 2−forma meromorfa con polos en su discriminante ∆(W), este último conjunto es el lugar donde las tangentes a las hojas de las foliaciones que conforman el web dejan de ser transversales. La estructura local de un k−web no es rígida como sucede en los casos k = 1, 2 sino que admiten invariantes analíticos no triviales: el rango de un web, que no es sino la dimensión de un espacio que relaciona las integrales primeras de las foliaciones que definen a un web, y su curvatura. El estudio de webs desde el punto de vista local ha sido tratado por diferentes autores, ver [2, 11]. Un ejemplo de un k−web proveniente de la geometría algebraica proyectiva es obtenido al considerar una curva algebraica reducida C sobre P 2 C de grado k, la curva dual Cˇ ⊂ Pˇ2 C de C es la curva formada por las tangentes a C. Como Cˇ es de clase k entonces por un punto genérico ℓ ∈ Pˇ2 C pasan exactamente k tangentes a Cˇ. Podemos considerar estas k rectas como hojas de foliaciones sobre un abierto Zariski de Pˇ2 C , de esta manera obtenemos un k−web, llamado web algebraico asociado a la curva C, denotado por WC. Como consecuencia de un teorema clásico de Abel, el rango del k−web WC es maximal, en el sentido que coincide con la cota superior (k − 1)(k − 2)/2. Para un k−web con k > 3 la curvatura es definida como la suma de las curvaturas de todos los 3−subwebs extraídos de un web W. Miháileanu obtiene un resultado donde demuestra que el anulamiento de la curvatura de un k−web es una condición necesaria para la maximalidad del rango de W, ver [32]. Los webs de rango máximo que no son localmente equivalentes a ningún web algebraico WC han sido denominados excepcionales. En [25] los autores demuestran que para cada k > 4 existe una familia infinita de k−webs excepcionales contenidos en el espacio de k−webs de grado 1.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/5658
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectFoliacioneses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.00es_ES
dc.titleWebs planos y foliaciones Galoises_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.type.otherTesis de doctorado
renati.discipline541038es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#doctores_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineMatemáticases_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelDoctoradoes_ES
thesis.degree.nameDoctor en Matemáticases_ES

Archivos