Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture

dc.contributor.advisorBeltrán Castañón, César Armando
dc.contributor.authorMelendez Melendez, Roy Kelvin
dc.date.accessioned2021-08-11T16:48:25Z
dc.date.available2021-08-11T16:48:25Z
dc.date.created2021
dc.date.issued2021-08-11es_ES
dc.description.abstractHuman infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/19908
dc.language.isoenges_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/*
dc.subjectRedes neuronales (Computación)es_ES
dc.subjectEspermatozoides--Análisises_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.02.01es_ES
dc.titleSperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecturees_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni29561260
renati.advisor.orcidhttps://orcid.org/0000-0002-0173-4140es_ES
renati.author.dni42969373
renati.discipline611087es_ES
renati.jurorOlivares Poggi, Cesar Augusto
renati.jurorBeltran Castañon, Cesar Armando
renati.jurorAlfaro Alfaro, Anali Jesus
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#trabajoDeInvestigaciones_ES
thesis.degree.disciplineInformática con mención en Ciencias de la Computaciónes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgrado.es_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Informática con mención en Ciencias de la Computaciónes_ES

Archivos