Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
No hay miniatura disponible
Fecha
2021-08-11
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.
Descripción
Palabras clave
Redes neuronales (Computación), Espermatozoides--Análisis
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess