Marco teórico y estudios de caso para la mejora en la optimización de la red de agencias de una empresa bancaria en Lima Metropolitana

No hay miniatura disponible

Fecha

2021-06-15

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

La investigación toma sustento debido al proceso importante de transformación digital que están afrontando los bancos, lo cual implica una nueva estrategia de canales y educar a sus clientes a usar más aplicativos digitales. Esto es clave si estas organizaciones desean mantener una supervivencia en el mediano plazo debido a que hoy están saliendo nuevos competidores en el mercado. El objetivo de la investigación es identificar las fuentes teóricas que ayuden a plantear la mejor solución para la problemática identificada al momento de realizar un diagnóstico de los procesos en el Banco ABC: mejora del proceso de optimización de canales físicos usando marketing analytics y minería de datos. Como sustentos teóricos, toma como base algoritmos de machine learning de clustering relacionados a los modelos k-means y regresión multivariada. El procedimiento consiste en investigar en distintas fuentes académicas herramientas de diagnóstico de procesos, herramientas de la propuesta de mejora como conceptos de marketing analytics y minería de datos o algoritmos como regresiones y clustering. Finalmente, se analiza 3 casos que plantean problemáticas similares a la que se desea abordar en distintas industrias para poder comparar metodologías a seguir. Como resultados, se pudo consolidar una lista completa de conceptos sólidos del marco teórico que ayuden a sustentar la solución planteada, además, en los 3 casos planteados se identificó que existe un procedimiento claro de cómo abordar un problema de clustering. Como conclusión principal, se resume en que hoy existe mucha información sobre estos temas y casos prácticos como los que se abordan para poder sustentar cualquier propuesta de marketing analytics para una problemática en especifica. Se sugiere a los lectores manejar conceptos teóricos previos de estadística aplicada y algoritmos más sencillos como regresiones lineales para que pueda ser fácilmente entendible la teoría abordada al momento de buscar información de este tipo.

Descripción

Palabras clave

Big Data/Analytics, Minería de datos, Bancos--Control de procesos--Mejoramiento

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess