Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Análisis, algoritmos y estimados de la identidad de Selberg
    (Pontificia Universidad Católica del Perú, 2023-11-30) Loaiza Vasquez, Manuel Alejandro; Poirier Schmitz, Alfredo Bernardo
    Un tema central en la teoría de números es la distribución de los números primos sobre los enteros positivos. En una dirección, de los trabajos de Hadamard, de la Valleé Poussin y Newman, nosotros sabemos que el PNT (de su acrónimo en inglés Prime Number Theorem, Teorema del Número Primo) es cierto por métodos del análisis complejo. En otra dirección, Selberg, Breusch y Levinson probaron el PNT vía técnicas elementales, en el sentido de que solo usan análisis real. Hace menos de una década, Choudhary fortaleció la prueba de Levinson. Todas las pruebas elementales mencionadas derivan el PNT vía la identidad de Selberg. En esta tesis, establecemos otra prueba para la identidad de Selberg más simple que la de Choudhary en muchos aspectos. Ello se efectúa refinando los trabajos discutidos previamente. También presentamos un algoritmo de tiempo lineal para estimar una fórmula derivada de la identidad de Selberg.
  • Ítem
    Teorema de los números primos
    (Pontificia Universidad Católica del Perú, 2020-02-19) Tantarico Minchola, Galia Lizbeth; Valqui Hasse, Christian Holger
    El objetivo de este trabajo es demostrar el teorema de los números primos siguiendo la estructura del artículo de el doctor Bernard Zagier, y utilizando herramientas básicas del Análisis Complejo. La demostración del teorema se ha dividido en 6 pasos, donde esencialmente se prueban las propiedades de tres funciones. Gracias al teorema analítico, utilizado en el paso quinto y el en paso sexto, se llega a simplificar de manera significativa la complejidad de la demostración. En resumen el teorema de los números primos nos muestra una estimación de la cantidad de números primos que puede existir hasta un número determinado. Este teorema permite la verificación de muchos resultados relacionados con los números primos así como la elaboración de nuevas teorías.