Análisis, algoritmos y estimados de la identidad de Selberg

No hay miniatura disponible

Fecha

2023-11-30

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

Un tema central en la teoría de números es la distribución de los números primos sobre los enteros positivos. En una dirección, de los trabajos de Hadamard, de la Valleé Poussin y Newman, nosotros sabemos que el PNT (de su acrónimo en inglés Prime Number Theorem, Teorema del Número Primo) es cierto por métodos del análisis complejo. En otra dirección, Selberg, Breusch y Levinson probaron el PNT vía técnicas elementales, en el sentido de que solo usan análisis real. Hace menos de una década, Choudhary fortaleció la prueba de Levinson. Todas las pruebas elementales mencionadas derivan el PNT vía la identidad de Selberg. En esta tesis, establecemos otra prueba para la identidad de Selberg más simple que la de Choudhary en muchos aspectos. Ello se efectúa refinando los trabajos discutidos previamente. También presentamos un algoritmo de tiempo lineal para estimar una fórmula derivada de la identidad de Selberg.

Descripción

Palabras clave

Números primos, Teoremas, Algoritmos

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess