Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Optimización de pago de dividendos bajo una tasa de interés estocástica considerando el tiempo de ruina
    (Pontificia Universidad Católica del Perú, 2024-10-31) Peres Malarin, Luis Miguel; Farfán Vargas, Jonathan Samuel
    En el presente trabajo de tesis estudiaremos el problema de optimización de pago de dividendos para una compañía de seguros. El excedente de la empresa y la tasa de interés de descuento son modelados por procesos de difusión. Además, en la función de valor clásica se considera un término que depende de la vida útil de la compañía. Este término representa el valor presente que una compañía gana mientras se encuentra en actividad. El objetivo principal del problema es encontrar la función de valor y una estrategia ´optima para el pago de dividendos que maximice el valor esperado de los dividendos descontados acumulados hasta el tiempo de ruina de la compañía. Para este trabajo consideraremos dos escenarios: (I) Cuando la tasa de dividendos es acotada. En este primer escenario tenemos dos subescenarios que se originan por los parámetros iniciales asociados al modelo. En el primero, encontramos la forma explícita de la función de valor y la estrategia de pago de dividendos ´optima. En este caso, se debe pagar la máxima tasa durante la vida útil de la compañía. Además, demostramos un teorema de verificación asociado a nuestro problema. En el segundo caso, encontramos la solución de la ecuación HJB asociada al modelo, la cual a través de un teorema de verificación demostramos que es efectivamente la función de valor asociada a nuestro problema. La estrategia de pago de dividendos ´optima es de tipo barrera. Es decir, se debe pagar la máxima tasa cuando el excedente de la compañía supera una cierta barrera y no se debe pagar dividendos cuando el excedente está por debajo de esta barrera. En ambos subescenarios se muestran ejemplos numéricos para diferentes valores de los parámetros iniciales de nuestro modelo. (II) Cuando la tasa de dividendos no es acotada. En este caso, encontramos la solución de la ecuación HJB asociada a nuestro modelo y a través de un teorema de verificación demostramos que la solución obtenida es efectivamente la función de valor asociada a nuestro problema. Además, encontramos de forma explícita la función de valor y la estrategia ´optima de pago de dividendos. Esta estrategia consiste en pagar en cada instante el máximo de los excesos del excedente de la compañía sobre una cierta barrera hasta dicho instante, caso contrario no se paga dividendos. Finalmente, se muestran ejemplos numéricos para poder visualizar los resultados obtenidos.
  • Ítem
    Existencia de equilibrio competitivo en economias con bienes indivisibles y el teorema de unimodularidad
    (Pontificia Universidad Católica del Perú, 2022-03-24) Leiva Huamaní, Pedro Luis; Jordan Liza, Abelardo
    En esta tesis estudiamos un nuevo enfoque sobre las preferencias de un agente que adquiere cestas de consumo con bienes indivisibles y tenemos como objetivo principal encontrar condiciones bajo las cuales el equilibrio competitivo siempre existe para economías con bienes indivisibles en las que participan un conjunto finito de agentes. Por este motivo, consideramos una economía con n distintos bienes indivisibles que están disponibles en múltiples unidades y con un precio lineal, donde las preferencias de un agente están representadas por una función real definida sobre un subconjunto finito no vacío de Zn, llamada valoración. De esta manera, el primer objeto que estudiamos es el "Conjunto de precios de indiferencia" (LIP), el cual está conformado por los vectores de precios (en IRn) que hacen que el agente sea indiferente entre más de una cesta de consumo. Además, se demuestra que este conjunto está conformado por una colección finita de conjuntos convexos (n - 1)-dimensionales, los cuales forman un complejo poliedral racional (n - 1)-dimensional. Después de esto, enunciamos el teorema de equivalencia valoración-complejo, el cual afirma que cualquier complejo poliedral que satisface una cierta propiedad corresponde al LIP de una valoración y viceversa. De esta manera, podemos estudiar las demandas del agente usando directamente la geometría del LIP. Luego, definimos los "Tipos de demanda D", usando un conjunto de vectores que describen las formas en que las cestas demandadas por el agente pueden cambiar en respuesta a un pequeño cambio en los precios. Finalmente, probamos el "Teorema de unimodularidad", el cual nos proporciona condiciones para la existencia del equilibrio competitivo en este tipo de economías. Cabe mencionar que el principal aporte de este trabajo, es la presentación detallada de los resultados que han sido establecidos en las referencias [1], [2] y [7], tanto en el contexto matemático como económico.
  • Ítem
    Modelo de riesgo periódico con cambio de régimen para las empresas aseguradoras del sector agrícola
    (Pontificia Universidad Católica del Perú, 2020-01-31) Santana Flores, Carlos Alberto; Oliveros Ramos, David Ricardo
    El modelo de riesgo es un proceso donde se observa la evolución, a través del tiempo, de las utilidades de una empresa que nos permite identificar el momento donde se puede obtener utilidades negativas, además de ver la intensidad de esta pérdida. Hemos considerado para el presente trabajo una empresa aseguradora del rubro agrícola, debido a que creemos que es el sector productivo más vulnerable a los hechos catastróficos climatológicos generando grandes pérdidas a las personas que tienen como princiapal actividad la agricultura. Los objetivos propuestos son: Desarrollar la teoría básica de medidas aleatorias y proceso de conteo, enunciar y demostrar las propiedades del proceso de Poisson para el caso de una intensidad estocástica, describir el modelo de Cox con intensidad peri ódica con cambio de régimen, desarrollar los límites superiores de probabilidad de ruina, además de realizar un caso aplicativo donde se muestra las repercusiones en las utilidades de la empresa y el precio de la prima del seguro a medida que se presenten cambios climatológicos en dos posibles escenarios. La propuesta del modelo que se considera en este trabajo, está relacionado al número de ocurrencias (o hechos desafortunados), un proceso de Poisson no homogéneo con una intensidad λ(t) estocástico asociado a un cambio de régimen que es expresada mediante una cadena de Markov. Las conclusiones obtenidas determinan la existencia de una relación directa entre el precio de la prima y el número de incidentes catastróficos; así como cierta relación inversa entre las utilidades de la empresa y el incremento de la frecuencia.