Optimización de pago de dividendos bajo una tasa de interés estocástica considerando el tiempo de ruina
No hay miniatura disponible
Fecha
2024-10-31
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
En el presente trabajo de tesis estudiaremos el problema de optimización de pago de dividendos para una compañía de seguros. El excedente de la empresa y la tasa de interés de
descuento son modelados por procesos de difusión. Además, en la función de valor clásica se
considera un término que depende de la vida útil de la compañía. Este término representa
el valor presente que una compañía gana mientras se encuentra en actividad. El objetivo
principal del problema es encontrar la función de valor y una estrategia ´optima para el pago
de dividendos que maximice el valor esperado de los dividendos descontados acumulados
hasta el tiempo de ruina de la compañía.
Para este trabajo consideraremos dos escenarios:
(I) Cuando la tasa de dividendos es acotada.
En este primer escenario tenemos dos subescenarios que se originan por los parámetros
iniciales asociados al modelo. En el primero, encontramos la forma explícita de la
función de valor y la estrategia de pago de dividendos ´optima. En este caso, se debe
pagar la máxima tasa durante la vida útil de la compañía. Además, demostramos un
teorema de verificación asociado a nuestro problema. En el segundo caso, encontramos
la solución de la ecuación HJB asociada al modelo, la cual a través de un teorema de
verificación demostramos que es efectivamente la función de valor asociada a nuestro
problema. La estrategia de pago de dividendos ´optima es de tipo barrera. Es decir,
se debe pagar la máxima tasa cuando el excedente de la compañía supera una cierta
barrera y no se debe pagar dividendos cuando el excedente está por debajo de esta barrera. En ambos subescenarios se muestran ejemplos numéricos para diferentes valores
de los parámetros iniciales de nuestro modelo.
(II) Cuando la tasa de dividendos no es acotada.
En este caso, encontramos la solución de la ecuación HJB asociada a nuestro modelo y a través de un teorema de verificación demostramos que la solución obtenida es
efectivamente la función de valor asociada a nuestro problema. Además, encontramos
de forma explícita la función de valor y la estrategia ´optima de pago de dividendos. Esta
estrategia consiste en pagar en cada instante el máximo de los excesos del excedente
de la compañía sobre una cierta barrera hasta dicho instante, caso contrario no se
paga dividendos. Finalmente, se muestran ejemplos numéricos para poder visualizar los
resultados obtenidos.
In this thesis work we will study the dividend payout optimization problem for an insurance company. The company’s surplus and the discount interest rate are modeled by diffusion processes. In addition, in the classic value function is considered a term that depends on the useful life of the company. This term represents the present value that a company earns while it is in activity. The main objective of the problem is to find the value function and an optimal dividend payment strategy that maximizes the cumulated value of expected discounted dividends until the time of the company’s ruin. We will consider two scenarios for this work: (I) When the dividend rate is bounded: In this first scenario we have two sub-scenarios that originate from the initial parameters associated with the model. In the first one, we find the explicit form of the value function and the optimal dividend payment strategy. In this case, the maximum rate should be paid over the lifetime of the company. In addition, we prove a verification theorem associated with our problem. In the second one, we find the solution of the HJB equation associated with the model, which through a verification theorem we prove is indeed the value function to our associated problem. The optimal dividend payment strategy is of the barrier type. That is, the maximum rate should be paid when the company’s surplus exceeds a certain barrier and no dividends should be paid when the surplus is below this barrier. In both subscenarios numerical examples are shown for different values of the initial parameters of our model. (II) When the dividend rate is unbounded. In this case, we find the solution of the HJB equation associated with our model and through a verification theorem we prove that the solution obtained is indeed the value function associated with our problem. In addition, we explicitly find the value function and the optimal dividend payment strategy. This strategy consists of paying at each instant the maximum of the excess of the company’s surplus over a certain barrier up to that instant, otherwise no dividends are paid. Finally, numerical examples are shown to visualize the results obtained.
In this thesis work we will study the dividend payout optimization problem for an insurance company. The company’s surplus and the discount interest rate are modeled by diffusion processes. In addition, in the classic value function is considered a term that depends on the useful life of the company. This term represents the present value that a company earns while it is in activity. The main objective of the problem is to find the value function and an optimal dividend payment strategy that maximizes the cumulated value of expected discounted dividends until the time of the company’s ruin. We will consider two scenarios for this work: (I) When the dividend rate is bounded: In this first scenario we have two sub-scenarios that originate from the initial parameters associated with the model. In the first one, we find the explicit form of the value function and the optimal dividend payment strategy. In this case, the maximum rate should be paid over the lifetime of the company. In addition, we prove a verification theorem associated with our problem. In the second one, we find the solution of the HJB equation associated with the model, which through a verification theorem we prove is indeed the value function to our associated problem. The optimal dividend payment strategy is of the barrier type. That is, the maximum rate should be paid when the company’s surplus exceeds a certain barrier and no dividends should be paid when the surplus is below this barrier. In both subscenarios numerical examples are shown for different values of the initial parameters of our model. (II) When the dividend rate is unbounded. In this case, we find the solution of the HJB equation associated with our model and through a verification theorem we prove that the solution obtained is indeed the value function associated with our problem. In addition, we explicitly find the value function and the optimal dividend payment strategy. This strategy consists of paying at each instant the maximum of the excess of the company’s surplus over a certain barrier up to that instant, otherwise no dividends are paid. Finally, numerical examples are shown to visualize the results obtained.
Descripción
Palabras clave
Matemáticas financieras, Dividendos, Modelos estocásticos, Modelos matemáticos
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess