Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Inferencia bayesiana en un modelo de regresión cuantílica autorregresivo
    (Pontificia Universidad Católica del Perú, 2021-06-14) Quintos Choy, Manuel Alejandro; Bayes Rodríguez, Cristian Luis
    El modelo de regresión cuantílica autorregresivo permite modelar el cuantil condicional de una serie de tiempo a partir de los rezagos de la serie. En el presente trabajo se presenta la estimación de este modelo desde la perspectiva bayesiana asumiendo que los errores se distribuyen según la distribución asimétrica de Laplace (ALD). Luego, el proceso de generación de muestras de la distribución a posteriori es simplificado utilizando una representación estocástica de la ALD propuesta por Kotz et al. (2001) y el algoritmo de datos aumentados de Tanner y Wong (1987), siguiendo la propuesta de Kozumi y Kobayashi (2011), así como las adaptaciones para el modelamiento de series de tiempo de Cai et al. (2012) y Liu y Luger (2017). Los estudios de simulación demuestran que el supuesto sobre la distribución del término error no es limitante para estimar el cuantil condicional de series de tiempo con otras distribuciones. El modelo es aplicado en la predicción del Valor en Riesgo (VaR) en la serie de tiempo de los retornos diarios de la tasa de cambio de PEN a USD, y sus resultados son comparados con las predicciones obtenidas por las metodologías RiskMetrics, GARCH(1,1) y CAVIaR. Al respecto, la evidencia numérica permite concluir que el modelo QAR es una alternativa válida para estimar el VaR.