Inferencia bayesiana en un modelo de regresión cuantílica autorregresivo
No hay miniatura disponible
Fecha
2021-06-14
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
El modelo de regresión cuantílica autorregresivo permite modelar el cuantil condicional
de una serie de tiempo a partir de los rezagos de la serie. En el presente trabajo se presenta
la estimación de este modelo desde la perspectiva bayesiana asumiendo que los errores se
distribuyen según la distribución asimétrica de Laplace (ALD). Luego, el proceso de generación de muestras de la distribución a posteriori es simplificado utilizando una representación estocástica de la ALD propuesta por Kotz et al. (2001) y el algoritmo de datos aumentados de Tanner y Wong (1987), siguiendo la propuesta de Kozumi y Kobayashi (2011), así como las adaptaciones para el modelamiento de series de tiempo de Cai et al. (2012) y Liu y Luger (2017). Los estudios de simulación demuestran que el supuesto sobre la distribución del término error no es limitante para estimar el cuantil condicional de series de tiempo con otras distribuciones. El modelo es aplicado en la predicción del Valor en Riesgo (VaR) en la serie de tiempo de los retornos diarios de la tasa de cambio de PEN a USD, y sus resultados son comparados con las predicciones obtenidas por las metodologías RiskMetrics, GARCH(1,1) y CAVIaR. Al respecto, la evidencia numérica permite concluir que el modelo QAR es una alternativa válida para estimar el VaR.
Descripción
Palabras clave
Estadística bayesiana, Estadística--Modelos matemáticos, Análisis de regresión
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess