Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Génesis instrumental vinculado al uso de GeoGebra en el estudio de sucesiones geométricas por estudiantes universitarios(Pontificia Universidad Católica del Perú, 2024-02-22) Antezana Elorrieta, Angel Estuard; Martínez Miraval, Mihály AndréLa revisión de la literatura centrada en la noción de sucesión geométrica permite identificar el predominio del campo algebraico al abordar dicha noción, relegando con ello el uso de tecnologías digitales en el proceso de enseñanza-aprendizaje de los estudiantes que posiblemente podrían generar aprendizajes más completos. Es, en ese sentido, que se realiza esta investigación, el cual tiene por objetivo analizar cómo se produce el proceso de génesis instrumental vinculado al uso de GeoGebra al desarrollar una actividad sobre sucesiones geométricas con estudiantes universitarios. Para el análisis, se toma en cuenta aspectos del Enfoque instrumental como sustento teórico y se emplea una metodología de carácter cualitativo, el cual permite analizar y describir los conocimientos matemáticos que moviliza el estudiante cuando resuelve una tarea, mediado por un ambiente de representación dinámica como GeoGebra, así como interpretar las acciones que realiza el estudiante con dicho software. Como parte del proceso metodológico, se considera un conjunto de fases que van desde el planteamiento del problema hasta las conclusiones del estudio, además se brindan recomendaciones para futuras investigaciones. Se puede afirmar, a partir de los resultados de la secuencia de la actividad, que el sujeto de investigación utilizó un conjunto de herramientas de GeoGebra que le permitieron movilizar diferentes nociones matemáticas, como polígonos, áreas, puntos medio, funciones, entre otros, potenciando las propiedades del software y transformándolo en un instrumento para caracterizar la noción de sucesión geométrica. Se concluye del estudio la importancia del uso del ambiente de geometría dinámica como GeoGebra, como complemento de los procesos algorítmicos y analíticos propios de la Enseñanza de las Matemáticas, brindando un aprendizaje más completo al conectar las diferentes representaciones del concepto estudiado de forma simultánea.Ítem Texto completo enlazado Razonamiento covariacional de estudiantes de tercero de secundaria con respecto a funciones de variable continua y discreta(Pontificia Universidad Católica del Perú, 2021-10-14) Ramos Flores, Jhona Elizabeth; Martínez Miraval, Mihály AndréLa presente investigación surgió de revisar el Currículo Nacional de Educación Básica Regular de secundaria e identificar problemas que incorporan funciones de variable continua y discreta y observar en los estudiantes dificultades al desarrollarlos. Eso motivó la búsqueda de distintas investigaciones sobre funciones de variable continua y discreta y de investigaciones sobre el razonamiento covariacional de los estudiantes que se manifiesta en la resolución de problemas que involucran la coordinación de variables. Nuestra investigación tiene como objetivo analizar el razonamiento covariacional en estudiantes de tercero de secundaria al trabajar funciones de variable continua y discreta. Esta investigación se realizó con estudiantes de nivel de secundaria de una Institución Educativa Nacional. Utilizamos el Marco teórico desarrollado por Thompson y Carlson (2017), para identificar los comportamientos asociados a las acciones mentales de los estudiantes que ponen en juego al resolver problemas y que forman una imagen de covariación que permite clasificar su habilidad de razonar en uno de los niveles de Razonamiento Covariacional de dicho marco teórico. Se consideraron ciertos procedimientos metodológicos que tuvieron un enfoque cualitativo fundamentado por los trabajos de Hernández, Fernández y Baptista (2010), en el cual se hace el detalle de cada paso realizado en esta investigación. Se concluye de esta investigación, que los estudiantes ponen en juego su razonamiento covariacional al resolver problemas que involucran funciones y que la justificación de sus respuestas parece estar relacionada con la habilidad que tienen de razonar covariacionalmente.