Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Marco teórico y estudios de caso para la mejora en la optimización de la red de agencias de una empresa bancaria en Lima Metropolitana
    (Pontificia Universidad Católica del Perú, 2021-06-15) Briones Gallegos, Fernando David; Carbajal López, Eduardo
    La investigación toma sustento debido al proceso importante de transformación digital que están afrontando los bancos, lo cual implica una nueva estrategia de canales y educar a sus clientes a usar más aplicativos digitales. Esto es clave si estas organizaciones desean mantener una supervivencia en el mediano plazo debido a que hoy están saliendo nuevos competidores en el mercado. El objetivo de la investigación es identificar las fuentes teóricas que ayuden a plantear la mejor solución para la problemática identificada al momento de realizar un diagnóstico de los procesos en el Banco ABC: mejora del proceso de optimización de canales físicos usando marketing analytics y minería de datos. Como sustentos teóricos, toma como base algoritmos de machine learning de clustering relacionados a los modelos k-means y regresión multivariada. El procedimiento consiste en investigar en distintas fuentes académicas herramientas de diagnóstico de procesos, herramientas de la propuesta de mejora como conceptos de marketing analytics y minería de datos o algoritmos como regresiones y clustering. Finalmente, se analiza 3 casos que plantean problemáticas similares a la que se desea abordar en distintas industrias para poder comparar metodologías a seguir. Como resultados, se pudo consolidar una lista completa de conceptos sólidos del marco teórico que ayuden a sustentar la solución planteada, además, en los 3 casos planteados se identificó que existe un procedimiento claro de cómo abordar un problema de clustering. Como conclusión principal, se resume en que hoy existe mucha información sobre estos temas y casos prácticos como los que se abordan para poder sustentar cualquier propuesta de marketing analytics para una problemática en especifica. Se sugiere a los lectores manejar conceptos teóricos previos de estadística aplicada y algoritmos más sencillos como regresiones lineales para que pueda ser fácilmente entendible la teoría abordada al momento de buscar información de este tipo.