Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 9 de 9
  • Ítem
    Inferencia bayesiana en un modelo de regresión cuantílica autorregresivo
    (Pontificia Universidad Católica del Perú, 2021-06-14) Quintos Choy, Manuel Alejandro; Bayes Rodríguez, Cristian Luis
    El modelo de regresión cuantílica autorregresivo permite modelar el cuantil condicional de una serie de tiempo a partir de los rezagos de la serie. En el presente trabajo se presenta la estimación de este modelo desde la perspectiva bayesiana asumiendo que los errores se distribuyen según la distribución asimétrica de Laplace (ALD). Luego, el proceso de generación de muestras de la distribución a posteriori es simplificado utilizando una representación estocástica de la ALD propuesta por Kotz et al. (2001) y el algoritmo de datos aumentados de Tanner y Wong (1987), siguiendo la propuesta de Kozumi y Kobayashi (2011), así como las adaptaciones para el modelamiento de series de tiempo de Cai et al. (2012) y Liu y Luger (2017). Los estudios de simulación demuestran que el supuesto sobre la distribución del término error no es limitante para estimar el cuantil condicional de series de tiempo con otras distribuciones. El modelo es aplicado en la predicción del Valor en Riesgo (VaR) en la serie de tiempo de los retornos diarios de la tasa de cambio de PEN a USD, y sus resultados son comparados con las predicciones obtenidas por las metodologías RiskMetrics, GARCH(1,1) y CAVIaR. Al respecto, la evidencia numérica permite concluir que el modelo QAR es una alternativa válida para estimar el VaR.
  • Ítem
    Modelo de regresión semiparamétrico robusto
    (Pontificia Universidad Católica del Perú, 2021-05-11) Esquivel Segura, Henry John; Bayes Rodríguez, Cristian Luis
    El presente trabajo de tesis presenta un modelo de regresión semiparamétrico con errores t-Student, que permite estudiar el comportamiento de una variable dependiente dado un conjunto de variables explicativas cuando los supuestos de linealidad y normalidad no se cumplen. La estimación de los parámetros se realiza bajo el enfoque bayesiano a través del algoritmo de Gibbs. En el estudio de simulación se observa que el modelo propuesto es más robusto ante la presencia de valores atípicos que el usual modelo regresión semiparamétrico normal. Asimismo se presenta una aplicación con datos reales para ilustrar esta característica.
  • Ítem
    Modelamiento del tiempo a la ocurrencia de un evento con tiempos discretos
    (Pontificia Universidad Católica del Perú, 2021-01-18) Huertas Quispe, Anthony Enrique; Bayes Rodríguez, Cristian Luis
    En este trabajo de tesis, se plantea estudiar el tiempo a la ocurrencia de un evento en un proceso discreto. Para ello, se considera un modelo mixtura de fracción de cura sobre una población segmentada en dos tipos de individuos: sujetos curados, o también denominados sobrevivientes a largo plazo, haciendo referencia a aquellos sujetos que no alcanzarán el evento de interés en estudio; y sujetos no curados, o también denominados sujetos susceptibles, quienes en un tiempo específico, experimentarán dicho evento de interés. Los objetivos principales de esta tesis, son el de estimar la fracción de cura, la cual está definida como la proporción de individuos curados al final del estudio, y estimar el tiempo de falla para los individuos susceptibles, entendiéndose como el tiempo a la ocurrencia del evento. Este análisis se llevará a cabo con la presencia de covariables y datos censurados, siendo la simulación e inferencia de los datos efectuados vía el software estadístico R, en donde los procesos de simulación abordarán distintos escenarios para evaluar la performance del modelo propuesto.
  • Ítem
    Métodos de selección de variables bajo el enfoque bayesiano para el modelo lineal normal
    (Pontificia Universidad Católica del Perú, 2021-01-18) Blas Oyola, Sthip Frank; Bayes Rodríguez, Cristian Luis
    En muchos casos prácticos, al realizar un análisis de regresión, se cuenta con un gran número de potenciales variables explicativas de las cuáles sólo algunas serán importantes para explicar la variable respuesta. Por lo tanto, un problema importante para la construcción de un modelo de regresión es encontrar un adecuado conjunto de variables explicativas. A los métodos que lidian con este problema se les denomina métodos de selección de variables. En el presente proyecto de tesis, se estudiarán tres métodos de selección de variables bajo inferencia bayesiana para el modelo de regresión lineal normal los cuales fueron propuestos por George y McCulloch (1993), Kuo y Mallick (1998) y Dellaportas et al. (2002). Estos métodos, a diferencia de los métodos tradicionales, consideran la selección de variables dentro del mismo modelo, por ejemplo, introduciendo variables latentes que indiquen la presencia o ausencia de una variable explicativa. Se realizaron comparaciones de estos métodos bayesianos con los métodos Lasso y Stepwise por ser los más tradicionales. A través de un estudio con datos simulados, en diversos escenarios se observa que los métodos bayesianos permiten una adecuada selección de las variables explicativas. Adicionalmente se presentan los resultados de una aplicación con datos reales.
  • Ítem
    Jointly modelling of cluster dependent pro les of fractional and binary variables from a Bayesian point of view
    (Pontificia Universidad Católica del Perú, 2020-10-27) Cortés Tejada, Fernando Javier; Bayes Rodríguez, Cristian Luis
    En la presente tesis se proponen modelos de clasificación basados en regresiones beta inflacionadas cero-uno con efectos mixtos para modelar perfiles longitudinales de variables fraccionarias mixtas y variables binarias de forma conjunta con formación de clústeres. Las distintas parametrizaciones de los modelos propuestos permiten modelar distintos efectos, como modelar directamente la media marginal a través de covariables e interpretar fácilmente su efecto sobre ella o modelar la media condicional y las probabilidades de inflación de forma separada. Además, se forman clústeres de grupos de individuos con perfiles longitudinales similares a través de una variable latente, asumiendo que las variables respuesta siguen un modelo de mixtura finita. Debido a la complejidad de los modelos, los parámetros se estiman desde un punto de vista bayesiano, a partir de simulaciones MCMC utilizando el software JAGS en R. Se prueban los modelos propuestos sobre diferentes bases de datos simulados para medir el desempeño de los mismos y se comparan con otros modelos a fin de verificar cual ajusta mejor los perfiles longitudinales de variables fraccionarias mixtas y variables binarias. Por último, se aplican los modelos propuestos a datos reales de un banco peruano, con información del ratio de uso de tarjetas de crédito en el periodo de un año, estado de default del cliente y otras covariables correspondientes al cliente poseedor de la tarjeta, con el objetivo de obtener clústeres de individuos con similar ratio de uso de tarjeta de crédito y relacionarlos con la probabilidad de caer en default que presenta cada grupo.
  • Ítem
    A beta inflated mean regression model with mixed effects for fractional response variables
    (Pontificia Universidad Católica del Perú, 2017-06-20) Fernández Villegas, Renzo; Bayes Rodríguez, Cristian Luis
    In this article we propose a new mixed effects regression model for fractional bounded response variables. Our model allows us to incorporate covariates directly to the expected value, so we can quantify exactly the influence of these covariates in the mean of the variable of interest rather than to the conditional mean. Estimation is carried out from a Bayesian perspective and due to the complexity of the augmented posterior distribution we use a Hamiltonian Monte Carlo algorithm, the No-U-Turn sampler, implemented using Stan software. A simulation study for comparison, in terms of bias and RMSE, was performed showing that our model has a better performance than other traditional longitudinal models for bounded variables. Finally, we applied our Beta Inflated mixed-effects regression model to real data which consists of utilization of credit lines in the peruvian financial system.
  • Ítem
    Inferencia bayesiana en un modelo de regresión cuantílica semiparamétrico
    (Pontificia Universidad Católica del Perú, 2015-07-20) Agurto Mejía, Hugo Miguel; Bayes Rodríguez, Cristian Luis
    Este trabajo propone un Modelo de Regresión Cuantílica Semiparamétrico. Nosotros empleamos la metodología sugerida por Crainiceanu et al. (2005) para un modelo semiparamétrico en el contexto de un modelo de regresión cuantílica. Un enfoque de inferencia Bayesiana es adoptado usando Algoritmos de Montecarlo vía Cadenas de Markov (MCMC). Se obtuvieron formas cerradas para las distribuciones condicionales completas y así el algoritmo muestrador de Gibbs pudo ser fácilmente implementado. Un Estudio de Simulación es llevado a cabo para ilustrar el enfoque Bayesiano para estimar los parámetros del modelo. El modelo desarrollado es ilustrado usando conjuntos de datos reales.
  • Ítem
    Una aplicación de intervalos de confianza para la mediana de supervivencia en el modelo de regresión de Cox
    (Pontificia Universidad Católica del Perú, 2015-07-17) Mondragón Arbocco, Jorge Adolfo; Bayes Rodríguez, Cristian Luis
    El presente trabajo estudiará el método propuesto por Tze y Zheng (2006) aplicándolo a la obtención de intervalos de confianza para la mediana de supervivencia de líneas móviles de una empresa de telecomunicaciones. Esta metodología se aplicará con el objeto de conocer el riesgo de vida promedio de la línea móvil así como de qué manera inciden las covariables sobre el tiempo hasta el incumplimiento del pago de los clientes de la empresa. Para ello se hará uso de una extensión del modelo de Cox haciendo uso de la estimación máximo verosímil para obtener nuevas estimaciones del vector de parámetros mediante el método bootstrap lo que permita la construcción de los intervalos de confianza para la mediana de supervivencia.
  • Ítem
    Inferencia bayesiana en el modelo de regresión spline penalizado con una aplicación a los tiempos en cola de una agencia bancaria
    (Pontificia Universidad Católica del Perú, 2013-04-08) Huaraz Zuloaga, Diego Eduardo; Bayes Rodríguez, Cristian Luis
    En diversos campos de aplicación se requiere utilizar modelos de regresión para analizar la relación entre dos variables. Cuando esta relación es compleja, es difícil modelar los datos usando técnicas paramétricas tradicionales, por lo que estos casos requieren de la flexibilidad de los modelos no paramétricos para ajustar los datos. Entre los diferentes modelos no paramétricos está la regresión spline penalizada, que puede ser formulada dentro de un marco de modelos lineales mixtos. De este modo, los programas computacionales desarrollados originalmente para la inferencia clásica y Bayesiana de modelos mixtos pueden ser utilizados para estimarlo. La presente tesis se centra en el estudio de la inferencia Bayesiana en el modelo de regresión spline penalizado. Para lograr esto, este trabajo proporciona un marco teórico breve de este modelo semiparamétrico y su relación con el modelo lineal mixto, la inferencia Bayesiana de este modelo, y un estudio de simulación donde se comparan la inferencia clásica y Bayesiana en diferentes escenarios considerando diversos valores del n umero de nodos, tamaños de muestra y niveles de dispersión en la data simulada. Finalmente, en base a los resultados del estudio de simulación, el modelo se aplica para estimar el tiempo de espera en cola de los clientes en agencias bancarias con el fin de calcular la capacidad de personal óptima bajo determinadas metas de nivel de servicio.