Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
No hay miniatura disponible
Fecha
2018-10-17
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile
robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a
desired parking position while avoiding obstacles on the way. The taken approach to solve this
problem is based on neural fuzzy techniques.
Earlier works resulted in a controller to navigate the robot in a clear environment. It is extended
by considering additional parameters in the training process. The learning method used in this
training is dynamic backpropagation.
For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and trained. It
influences the results from the navigation controller to avoid collisions with objects blocking the
path. The controller is trained with dynamic backpropagation and
a reinforcement learning algorithm called deep deterministic policy gradient.
Descripción
Palabras clave
Robots móviles, Controladores programables, Redes neuronales (Computación), Sistemas difusos
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess