Data augmentation and subword segmentation for spell-checking in amazonian languages

dc.contributor.advisorOncevay Marcos, Félix Arturo
dc.contributor.authorAlva Cohello, Carlo André
dc.date.accessioned2021-09-24T22:32:54Z
dc.date.available2021-09-24T22:32:54Z
dc.date.created2018
dc.date.issued2021-09-24es_ES
dc.description.abstractEn el Perú se han identificado 48 lenguas originarias, según la información extraída de la Base de Datos oficial de Pueblos Indígenas u originarios (BDPI). Estas son de tradición oral [BDPI, 2020]. Por lo que no había una forma oficial de enseñanza. El Instituto Linguistico de Verano (ILV) recopiló y documentó diversas lenguas nativas [Faust, 1973], como un primer intento para tener un documento formal para la enseñanza de una lengua originaria. Fue después que el Gobierno Peruano con su estrategia de inclusión social “Incluir para crecer” creó una guía oficial para la enseñanza de las lenguas originarias en su intento de normalizar el uso de estas lenguas [Jara Males, Gonzales Acer, 2015]. Como se menciona en [Forcada, 2016], el uso de tecnologías del lenguaje permite obtener una normalidad, incremento de literatura, estandarización y mayor visibilidad. En el caso de Perú, ha habido iniciativas, como analizadores morfológicos [Pereira-Noriega, et al., 2017] o correctores ortográficos [Alva, Oncevay, 2017], enfocados en las lenguas originarias de escasos recursos computacionales que pretenden apoyar el esfuerzo de revitalización, la educación indígena y la documentación de las lenguas [Zariquiey et al., 2019]. Enfocándose en lenguas amazónicas se realizó un proyecto utilizando redes neuronales para desarrollar un corrector ortográfico enfocado en las lenguas originarias con buenos resultados a nivel de precisión [Lara, 2020]. En ese trabajo, al disponer de poca cantidad de datos se generaron datos sintéticos con un método aleatorio los cuales al ser evaluados con las métricas CharacTER [Wang, et al., 2016] y BLEU [Papineni, et al., 2002] obtuvieron resultados bastante bajos. Además, las lenguas amazónicas al ser ricas a nivel morfológico y tener un vocabulario extenso es difícil representar palabras fuera del vocabulario, por lo que es recomendable usar sub-palabras como término medio [Wu, Zhao, 2018]. El presente proyecto desarrolla distintos métodos de generación de datos, diferentes al aleatorio, que son más robustos al considerar errores que son más cercanos a la realidad. A su vez, para reducir el costo computacional y mantener la capacidad de generar un vocabulario abierto, adicionalmente se entrena redes neuronales que reciban como entrada sub-palabras tales como sílabas y segmentos divididos por byte pair encoding (BPE). Finalmente, de los experimentos concluimos que hubo mejoras con los métodos y la segmentación propuesta y se tienen más recursos computacionales para nuestras lenguas amazónicas.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/20422
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/pe/*
dc.subjectLingüística computacionales_ES
dc.subjectOrtografíaes_ES
dc.subjectLenguas indígenas--Perúes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_ES
dc.titleData augmentation and subword segmentation for spell-checking in amazonian languageses_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni46440101
renati.advisor.orcidhttps://orcid.org/0000-0001-7675-6208es_ES
renati.author.dni71313909
renati.discipline611087es_ES
renati.jurorMiller, John Edward
renati.jurorOncevay Marcos, Félix Arturo
renati.jurorAlva Manchego, Fernando Emilio
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineInformática con mención en Ciencias de la Computaciónes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgrado.es_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Informática con mención en Ciencias de la Computaciónes_ES

Archivos