Investigation of the rheological behavior of polyborosiloxane
No hay miniatura disponible
Fecha
2024-02-26
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
Polyborosiloxano, una silicona derivada de la modificación del polidimetilsiloxano con grupos
B(OH)x en sus cadenas poliméricas, exhibe propiedades únicas, como su comportamiento reológico
y capacidad de autorregeneración. Estas características se explican a través de su
estructura química: ante deformaciones lentas, los enlaces se rompen y regeneran secuencialmente,
permitiendo el movimiento de las cadenas. No obstante, al superar un límite, estos
enlaces actúan como puntos de reticulación, aumentando la rigidez del material. Aunque se
ha investigado la relación entre la estructura química y las propiedades, la influencia de los
métodos de síntesis y diversos estímulos aún no se ha explorado completamente.
En esta investigación, se fabricaron muestras de polyborosiloxano utilizando polidimetilsiloxanos
con diferentes viscosidades. Estas muestras se clasifican en tres categorías: la primera
consiste en polyborosiloxanos puros, la segunda en muestras obtenidas mezclando dos precursores
de viscosidades diferentes en proporciones en peso (20/80, 40/60, 60/40 y 80/20 %), y
la tercera en mezclas de los polyborosiloxanos puros siguiendo las mismas proporciones que la
segunda categoría.
Se realizaron pruebas de barrido de amplitud y frecuencia para evaluar las propiedades reológicas
de las muestras. Además, se emplearon diversas técnicas para caracterizar la estructura
química y morfología, con el fin de identificar los diferentes enlaces químicos y residuos de ácido
bórico no reaccionado. Con el propósito de analizar el impacto de las vibraciones, se realizó
una prueba de cambio de forma a diversas frecuencias para determinar las tasas de deformación
de las muestras de polyborosiloxano puro.
El análisis químico y morfológico de las muestras confirma la existencia de enlaces Si-O-B en la
estructura, validando la correcta síntesis del polyborosiloxano. Además, se identificaron residuos
de ácido bórico no reaccionado en todas las muestras sometidas a ensayo. En relación con
la caracterización reológica, se constató que las muestras pertenecientes a la segunda categoría
exhibieron una distribución más homogénea en la influencia de uno de los polyborosiloxanos
en sus propiedades en comparación con las de la tercera categoría. Además, en estas últimas,
la adición de polyborosiloxano de menor viscosidad afectó el comportamiento reológico para
valores superiores al 40%. Los gráficos de cambio de forma evidencian el impacto de los estímulos
mecánicos en la capacidad de retención de forma del polyborosiloxano. En el caso de
la muestra de menor viscosidad, se registraron las mayores y menores deformaciones a 0 Hz y
1 Hz, respectivamente; en contraste, para la otra muestra, dichas frecuencias fueron de 5 Hz y
1 Hz.
Polyborosiloxane, also known as Shear Stiffening Gel, is a silicon-based elastomer resulting from the modification of polydimethylsiloxane with B(OH)x groups. This material possesses exceptional properties, including unique viscoelasticity and self-healing ability. Its chemical structure explains two entirely reversible mechanical behaviors: at low stress rates, polyborosiloxane exhibits a viscous fluid behavior due to the relaxation of dynamic bonds, and at high stress rates, its behavior transitions from viscous to rubbery as a result of the locking of these dynamic bonds. Previous investigations have explored the relationship between the chemical structure and its properties. However, there is insufficient information regarding the influence of synthesis methods and different stimuli (vibrations or magnetic field) for its application in soft robotics. In this thesis, various polyborosiloxane samples were created using polydimethylsiloxanes with two different viscosities, one being higher than the other. These samples are divided into three categories. The first category consists of pure polyborosiloxanes synthesized with the mentioned polydimethylsiloxane precursors. The second category involves synthesized samples by mixing the two polydimethylsiloxane precursors in different weight ratios (20/80, 40/60, 60/40, and 80/20). The third group includes samples formed by mixing the two pure polyborosiloxanes of the first category in the same ratios as the second group. The rheological properties of these samples are evaluated through amplitude and frequency sweep tests. Additionally, various techniques are employed to characterize the chemical structure and morphology, revealing the diverse bonds present in the samples. To explore the impact of vibrations on polyborosiloxane properties, a shape change test is conducted at various vibration frequencies to identify the frequencies at which a semi-spherical polyborosiloxane sample exhibits the lowest and highest deformation rates under its own weight in a gravitational field. The characterization results reveal the presence of characteristic chemical bonds Si-O-B in the structure of the synthesized polyborosiloxane samples, along with traces of unreacted boric acid. The analysis based on rheological testing leads to the conclusion that the samples from the second category, involving the mixing of polydimethylsiloxane precursors, display a more homogeneous distribution compared to those in the third category. Moreover, in the samples of the third category, the addition of polyborosiloxane synthesized with the lower viscosity precursor starts to influence on the rheological behavior for values over 40 %of this material. The shape change graphics demonstrate the impact of mechanical stimuli on the shape-retainability of polyborosiloxane. Therefore, for the polyborosiloxane sample made with the lower viscosity precursor, the highest and lowest deformations were observed at 0 Hz and 1 Hz, respectively. In contrast, for the other sample, these frequencies were recorded at 5 Hz and 1 Hz.
Polyborosiloxane, also known as Shear Stiffening Gel, is a silicon-based elastomer resulting from the modification of polydimethylsiloxane with B(OH)x groups. This material possesses exceptional properties, including unique viscoelasticity and self-healing ability. Its chemical structure explains two entirely reversible mechanical behaviors: at low stress rates, polyborosiloxane exhibits a viscous fluid behavior due to the relaxation of dynamic bonds, and at high stress rates, its behavior transitions from viscous to rubbery as a result of the locking of these dynamic bonds. Previous investigations have explored the relationship between the chemical structure and its properties. However, there is insufficient information regarding the influence of synthesis methods and different stimuli (vibrations or magnetic field) for its application in soft robotics. In this thesis, various polyborosiloxane samples were created using polydimethylsiloxanes with two different viscosities, one being higher than the other. These samples are divided into three categories. The first category consists of pure polyborosiloxanes synthesized with the mentioned polydimethylsiloxane precursors. The second category involves synthesized samples by mixing the two polydimethylsiloxane precursors in different weight ratios (20/80, 40/60, 60/40, and 80/20). The third group includes samples formed by mixing the two pure polyborosiloxanes of the first category in the same ratios as the second group. The rheological properties of these samples are evaluated through amplitude and frequency sweep tests. Additionally, various techniques are employed to characterize the chemical structure and morphology, revealing the diverse bonds present in the samples. To explore the impact of vibrations on polyborosiloxane properties, a shape change test is conducted at various vibration frequencies to identify the frequencies at which a semi-spherical polyborosiloxane sample exhibits the lowest and highest deformation rates under its own weight in a gravitational field. The characterization results reveal the presence of characteristic chemical bonds Si-O-B in the structure of the synthesized polyborosiloxane samples, along with traces of unreacted boric acid. The analysis based on rheological testing leads to the conclusion that the samples from the second category, involving the mixing of polydimethylsiloxane precursors, display a more homogeneous distribution compared to those in the third category. Moreover, in the samples of the third category, the addition of polyborosiloxane synthesized with the lower viscosity precursor starts to influence on the rheological behavior for values over 40 %of this material. The shape change graphics demonstrate the impact of mechanical stimuli on the shape-retainability of polyborosiloxane. Therefore, for the polyborosiloxane sample made with the lower viscosity precursor, the highest and lowest deformations were observed at 0 Hz and 1 Hz, respectively. In contrast, for the other sample, these frequencies were recorded at 5 Hz and 1 Hz.
Descripción
Palabras clave
Resistencia de materiales, Materiales--Propiedades químicas, Materiales--Propiedades físicas y mecánicas
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess