Variedades de contacto tóricas
No hay miniatura disponible
Fecha
2018-01-25
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
En este trabajo se presentará un estudio de las variedades de contacto obtenidas
mediante el método de reducción de contacto, demostrado inicialmente por
Geiges e impulsado por él mismo, E. Lerman entre otros. Dicho resultado
tiene su esencia en el teorema de reducción simpléctica demostrado por K. R.
Meyer en 1973 e independientemente por J. Marsden y A. Weinstein en 1974.
Ambas contribuciones a la mecánica clásica impulsaron que en los últimos
años se busque generalizar estos resultados al caso de contacto. Por ello, se
pone mucha atención en el tipo de grupo de automorfismos que actuará en
la variedad de estudio, con el objetivo de encontrar mayor información de la
estructura de las variedades obtenidas luego de la reducción. La particularidad
en los ejemplos que desarrollaremos será en que el grupo actuando en
muchos casos será un toro de una cierta dimensión, lo cual nos generará las
llamadas variedades teóricas de contacto.
In this work, we will study contact manifolds obtained through the contact reduction method, initially demonstrated by Geiges and promoted by himself, E. Lerman among others. This result has its essence in the symplectic reduction theorem demonstrated by K. R. Meyer in 1973 and independently by J. Marsden and A. Weinstein in 1974. Both contributions to classical mechanics led to the search of generalization of these results to the contact case over the last few years. Therefore, a lot of attention is paid to the type of group of automorphisms that will act in the study manifold, with the aim of nding more information on the structure of the manifolds obtained after the reduction. The particularity in the examples that we will develop will be that the group acting in many cases will be a torus of a certain dimension, which will generate the so-called contact toric manifolds.
In this work, we will study contact manifolds obtained through the contact reduction method, initially demonstrated by Geiges and promoted by himself, E. Lerman among others. This result has its essence in the symplectic reduction theorem demonstrated by K. R. Meyer in 1973 and independently by J. Marsden and A. Weinstein in 1974. Both contributions to classical mechanics led to the search of generalization of these results to the contact case over the last few years. Therefore, a lot of attention is paid to the type of group of automorphisms that will act in the study manifold, with the aim of nding more information on the structure of the manifolds obtained after the reduction. The particularity in the examples that we will develop will be that the group acting in many cases will be a torus of a certain dimension, which will generate the so-called contact toric manifolds.
Descripción
Palabras clave
Variedades simplécticas, Sistemas hamiltonianos, Variedades, Variedades
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess