Cremona Symmetry in Gromov-Witten Theory
Cargando...
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Resumen
En este trabajo establecemos la existencia de una simetra en el marco de la teora de Gromov-Witten para CPn y su explosion a lo largo de puntos. La naturaleza de esta simetra queda codicada en la transformacion de Cremona y su resolucion en una variedad torica del permutoedro. Esta simetra expresa algunos invariantes difciles de calcular junto con otros que no lo son tanto. Nos centramos en implicaciones enumerativas; en particular esta tecnica ofrece una prueba enuna lnea de la unicidad de la curva racional normal. Nuestro metodo involucra un estudio de la geometra torica del permutoedro, as como el de la degeneracion de los invariantes de Gromov-Witten.
We establish the existence of a symmetry within the Gromov-Witten theory of CPn and its blowup along points. The nature of this symmetry is encoded in the Cremona transform and its resolution, which lives on the toric variety of the permutohedron. This symmetry expresses some difficult to compute invariants in terms of others less difficult to compute. We focus on enumerative implications; in particular this technique yields a one line proof of the uniqueness of the rational normal curve. Our method involves a study of the toric geometry of the permutohedron, and degeneration of Gromov-Witten invariants.
We establish the existence of a symmetry within the Gromov-Witten theory of CPn and its blowup along points. The nature of this symmetry is encoded in the Cremona transform and its resolution, which lives on the toric variety of the permutohedron. This symmetry expresses some difficult to compute invariants in terms of others less difficult to compute. We focus on enumerative implications; in particular this technique yields a one line proof of the uniqueness of the rational normal curve. Our method involves a study of the toric geometry of the permutohedron, and degeneration of Gromov-Witten invariants.
Descripción
Palabras clave
Gromov-Witten Theory, Enumerative Geometry, Stationary Invariants, Cremona Transform, Projective Space, Permutohedron, Permutohedral, Toric Variety, Losev-Manin Space, Teoría de Gromov-Witten, Geometría Enumerativa, Invariantes Estacionarios, Transformación de Cremona, Espacio Proyectivo, Permutoedro, Variadad Tórica Permutoedral, Espacio de Losev-Manin
Citación
DOI
Acceso al texto completo solo para la Comunidad PUCP
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess