Elemental and isotope characterization of the Lithium-rich Tuff from the Macusani Volcanic Field, Puno, Peru
No hay miniatura disponible
Fecha
2024-08-09
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
Las tecnologías ecoeficientes, en particular las baterías recargables de iones de litio,
han provocado un aumento en la demanda de litio. El Proyecto de Litio Falchani, ubicado en
el Campo Volcánico Neógeno de Macusani en el sureste del Perú es de tipo volcanogénico y
contiene uno de los recursos de este metal más significativos a nivel mundial. El recurso de
litio se aloja principalmente en la denominada Toba Rica en Litio, una lutita tobácea que se
encuentra intercalada entre las unidades de Brecha Superior y Brecha Inferior, también ricas
en litio. El objetivo principal de esta tesis es la caracterización geoquímica (elemental e
isotópica) de la Toba Rica en Litio, con un enfoque principal en la petrogénesis del magma
parental y las modificaciones post-depositacionales.
La composición de elementos mayores y traza de la Toba Rica en Litio difiere de la
de las tobas de flujo piroclástico reportadas previamente en el Campo Volcánico de
Macusani. En cambio, se asemeja a la composición de obsidianas altamente evolucionadas y
fuertemente peraluminosas conocidas como macusanita. La Toba Rica en Litio muestra la
signatura geoquímica distintiva de granitos peraluminosos ricos en metales raros y
pegmatitas de Li-Cs-Ta (LCT), con altos contenidos de F, Sn, W y otros metales raros como
Nb, Ta, Li y Cs, además de un marcado empobrecimiento en Zr, Th, Y, tierrars raras (REE)
y Sr en comparación con ejemplos arquetípicos de granitos peraluminosos con moscovita
(MPG).
De acuerdo a modelización geoquímica, los magmas parentales de la Toba Rica en
Litio contenían aproximadamente un 15-30% de contribución de líquidos mantélicos
istotópicamente similares a basaltos potásicos-ultrapotásicos del Mioceno tardío en la región.
El restante 70-85% se atribuye a derivación/asimilación de paragneises proterozoicos y
paleozoicos y/o metapelitas paleozoicas. El enriquecimiento temprano en elementos
incompatibles en los magmas parentales de la Toba Rica en Litio se explica en parte por
asimilación de metapelitas paleozoicas y cristalización fraccionada simultánea (AFC). Sin
embargo, procesos metasomáticos en una etapa tardía pre-eruptiva, en presencia de fluidos
exsueltos de un reservorio magmático rico en volátiles y altamente fraccionado, fueron clave
para el enriquecimiento extremo en Li, Be, Rb, Nb y Ta. Dicho enriquecimiento, por lo tanto,
no estuvo relacionado con procesos de alteración in-situ post-depositacionales conectados a
la formación de arcillas y zeolitas.
The transition to eco-efficient technology, particularly rechargeable Li-ion batteries, is causing a significant increase in the demand for lithium. The recently discovered, unconventional, volcanogenic Falchani deposit, situated within the Neogene Macusani Volcanic Field in SE Peru, represents one of the most significant global resources of lithium. The lithium ore is primarily hosted in the so-called Lithium-rich Tuff, a tuffaceous mudstone that is sandwiched between the Upper and Lower Breccia units, which are also Li-rich. The main objective of this thesis is to conduct a geochemical (elemental and isotopic) characterization of the Lithium-rich Tuff with a main focus on parental magma petrogenesis and post-depositional modifications. The major and trace element composition of the Lithium-rich Tuff differs from that of previously reported ash-flow tuff in the Macusani Volcanic Field. Rather, it approximates the composition of highly evolved peraluminous obsidian glasses known as macusanite. The Lithium-rich Tuff shows the distinctive geochemical fingerprint of peraluminous rare metalrich granites and Li-Cs-Ta (LCT) pegmatites, with high contents of F, Sn, W, and other rare metals such as Nb, Ta, Li, and Cs, in addition to a strong depletion in Zr, Th, Y, rare earth elements (REE), and Sr compared to archetypal muscovite-bearing peraluminous granites (MPG). The parental magmas to the Lithium-rich Tuff have been modeled as containing ~15- 30% of a mantle contribution with an isotope signature similar to that of late Miocene potassic–ultra-potassic basaltic melts. The remaining ~70-85% is attributed to Proterozoic and Paleozoic paragneiss and/or Paleozoic metapelite contributions. An early enrichment in incompatible elements in the Lithium-rich Tuff parental magmas is in part explained by assimilation of Paleozoic metapelite rocks with simultaneous fractional crystallization (AFC). However, subsequent metasomatic processes in a pre-eruptive stage in the presence of fluids exsolved from a volatile-rich, highly fractionated, crystal-rich magmatic reservoir were key to the extreme enrichment in Li, Be, Rb, Nb, and Ta. Consequently, such enrichment was not related to in-situ, post-depositional, clay and zeolite alteration processes.
The transition to eco-efficient technology, particularly rechargeable Li-ion batteries, is causing a significant increase in the demand for lithium. The recently discovered, unconventional, volcanogenic Falchani deposit, situated within the Neogene Macusani Volcanic Field in SE Peru, represents one of the most significant global resources of lithium. The lithium ore is primarily hosted in the so-called Lithium-rich Tuff, a tuffaceous mudstone that is sandwiched between the Upper and Lower Breccia units, which are also Li-rich. The main objective of this thesis is to conduct a geochemical (elemental and isotopic) characterization of the Lithium-rich Tuff with a main focus on parental magma petrogenesis and post-depositional modifications. The major and trace element composition of the Lithium-rich Tuff differs from that of previously reported ash-flow tuff in the Macusani Volcanic Field. Rather, it approximates the composition of highly evolved peraluminous obsidian glasses known as macusanite. The Lithium-rich Tuff shows the distinctive geochemical fingerprint of peraluminous rare metalrich granites and Li-Cs-Ta (LCT) pegmatites, with high contents of F, Sn, W, and other rare metals such as Nb, Ta, Li, and Cs, in addition to a strong depletion in Zr, Th, Y, rare earth elements (REE), and Sr compared to archetypal muscovite-bearing peraluminous granites (MPG). The parental magmas to the Lithium-rich Tuff have been modeled as containing ~15- 30% of a mantle contribution with an isotope signature similar to that of late Miocene potassic–ultra-potassic basaltic melts. The remaining ~70-85% is attributed to Proterozoic and Paleozoic paragneiss and/or Paleozoic metapelite contributions. An early enrichment in incompatible elements in the Lithium-rich Tuff parental magmas is in part explained by assimilation of Paleozoic metapelite rocks with simultaneous fractional crystallization (AFC). However, subsequent metasomatic processes in a pre-eruptive stage in the presence of fluids exsolved from a volatile-rich, highly fractionated, crystal-rich magmatic reservoir were key to the extreme enrichment in Li, Be, Rb, Nb, and Ta. Consequently, such enrichment was not related to in-situ, post-depositional, clay and zeolite alteration processes.
Descripción
Palabras clave
Geoquímica--Isótopos, Litio--Perú--Puno
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess