Estimación bayesiana de efectos de red: el modelo Logit mixto

dc.contributor.advisorBayes Rodríguez, Cristian Luises_ES
dc.contributor.authorChahuara Vargas, Paulo Robertoes_ES
dc.date.accessioned2017-10-02T20:57:28Zes_ES
dc.date.available2017-10-02T20:57:28Zes_ES
dc.date.created2017es_ES
dc.date.issued2017-10-02es_ES
dc.description.abstractLos efectos o externalidades de red son factores que pueden condicionar las decisiones de contratación de los consumidores en favor de empresas ya establecidas y en contra de los nuevos competidores, pudiendo limitar la competencia efectiva y potencial de los mercados, en especial, en aquellas industrias donde el número de empresas es bajo y la entrada de nuevos competidores es poco frecuente. Por ello, es importante verificar su existencia y la magnitud de sus efectos sobre las decisiones de compra de los consumidores con el objetivo de justificar o establecer medidas que impulsen una competencia más equilibrada entre las empresas. Además, teniendo en consideración que los consumidores pueden tener cierto grado de heterogeneidad en sus comportamientos de adquisición, también resulta relevante estudiar el grado de diferenciación de los efectos de red entre los consumidores a fin de mejorar las políticas que fomenten la competencia. Este trabajo tiene por objetivo estimar un modelo logit mixto bajo el enfoque de la inferencia bayesiana, para estudiar empíricamente la existencia y heterogeneidad de los efectos de red sobre las decisiones de contratación de los consumidores en la industria de telefonía móvil peruana. El análisis se hace con base a una muestra que combina información de la Encuestas Residencial de Servicios de Telecomunicaciones (ERESTEL) del a˜no 2015 e información de las empresas operadoras del servicio de telefonía móvil. Los resultados de las estimaciones realizadas sugieren que los efectos de red tendrían un condicionamiento importante sobre las decisiones de contración del servicio de telefonía móvil, además de presentar un grado de heterogeneidad estadísticamente significativo en la magnitud de sus efectos.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/9449
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectEstadística bayesianaes_ES
dc.subjectEstadísticaes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.03es_ES
dc.titleEstimación bayesiana de efectos de red: el modelo Logit mixtoes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni40372640
renati.advisor.orcidhttps://orcid.org/0000-0003-0474-7921es_ES
renati.discipline542037es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineEstadísticaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Estadísticaes_ES

Archivos

Colecciones