Los teoremas de estructura de Cohen para anillos locales completos
No hay miniatura disponible
Fecha
2020-02-27
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
El presente trabajo se trata de que un anillo (A, m) local, noetheriano, regular, completo de dimensión d, cuya característica sea igual que la de su cuerpo residual (A/m), sea isomorfo al anillo de series formales de potencia en d variables con coeficientes en este cuerpo. Pero si las características son diferentes como por ejemplo la característica de A es cero y la característica de A/m es un número primo p, A no tiene esta estructura, en este caso p estará contenido en m y no estará en m2, entonces se dice que A es inramificado, por lo tanto en este caso A queda completamente determinado por su cuerpo residual (A/m) y su dimensión.
The present work is about the fact that a local, noetherian, regular, complete ring (A, m) with dimension d, whose characteristic is the same as that of its residual field (A/m) is isomorphic to the ring of formal series of power in variable d with coefficientes in this field. But if the characteristics are different as for example the characteristic of A is zero and the characteristic of A/mis a prime number p, then A does not have this structure and in this case pwill be contained in the maximal ideal m and will not be contained in m2, then it is said that A is unramified, therefore in this case the ring A is completely determined by its residual field (A/m) and its dimension.
The present work is about the fact that a local, noetherian, regular, complete ring (A, m) with dimension d, whose characteristic is the same as that of its residual field (A/m) is isomorphic to the ring of formal series of power in variable d with coefficientes in this field. But if the characteristics are different as for example the characteristic of A is zero and the characteristic of A/mis a prime number p, then A does not have this structure and in this case pwill be contained in the maximal ideal m and will not be contained in m2, then it is said that A is unramified, therefore in this case the ring A is completely determined by its residual field (A/m) and its dimension.
Descripción
Palabras clave
Álgebra booleana, Anillos (Álgebra), Anillos locales
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess